Бионическая архитектура в жизни человека. Архитектурная бионика. Характеристики архитектурных бионических строений

Главная / Юридические лица

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Реферат

Тема: « Бионика в архитектуре »

Выполнила: Лаврентьева Ксения

Самара - 2015 год

Введение

1. Понятие бионика

2. Зарождение бионики

3. Архитектурно - строительная бионика

4. Конусообразные конструкции

5. Конструкции с предварительным напряжением

6. Оболочки

7. Конструкции, имеющие вид спирали

8. Сетчатые, решетчатые и ребристые конструкции

9. Примеры конструкций

Заключение

Список использованной литературы

Приложения

Введение

Уже к началу XX века архитектура претерпела существенные изменения. Сказались последствия научно-технической революции - появление железобетона и опыт непосредственного использования металла в качестве строительного материала. Сказались также изменения социального порядка - рост городов, промышленных предприятий, демографическая проблема. Необходимость строить быстро, прочно, много, и дешево оказывала давление на архитектуру и обусловила ее характер и тенденции развития в XX-ХХI веках.

Это определило рождение интеграционных дисциплин и течений в науке, технике и искусстве, одним из примеров которых и является архитектурная бионика.

Архитектурно-бионическая практика породила новые, необычные архитектурные формы, целесообразные в функционально-утилитарном отношении и оригинальные по своим эстетическим качествам. Это не могло не вызвать к ним интереса со стороны архитекторов и инженеров.

Использование в технике и в архитектуре законов и форм живой природы вполне правомерно. В мире все взаимообусловлено. Нет вещей и явлений, которые бы не были связаны непосредственно или опосредованно между собой, нет непроходимых барьеров между живой природой и искусственными формами и конструкциями. Существуют законы, объединяющие весь мир в единое целое и порождающие объективную возможность использования в искусственно создаваемых системах закономерностей и принципов построения живой природы и ее форм. Основой этому служит биологическое родство человека и живой природы.

Актуальность темы обусловлена прогрессирующим развитием использования бионических форм в предметной среде, окружающей человека, начиная с древнего мира. Всё больше и больше биоформы оказывают влияние на всё, что создаётся человеком, в частности, на архитектуру. С развитием технологий и появлением всё новых материалов возможности использования бионических форм в архитектуре становятся практически безграничными. Важность изучения дисциплины бионика неоспорима, как неотъемлемая часть архитектуры.

Целью работы является рассмотрение возможности использования бионических форм в архитектуре.

Задачи работы заключаются в изучении самого понятия бионики, бионической архитектуры, в изучении основных направлений бионической архитектуры и примеров использования бионических форм в архитектуре.

1 . Понятие бионика

Бионика -- наука, изучающая живую природу, с целью использования полученных знаний в практической деятельности человека.

Бионика (англ. bionics, от bion -- живое существо, организм; греч. Bioo -- живу).

Термин бионика впервые появился в 1960 г., когда специалисты различных профилей, собравшиеся на симпозиум в Дайтоне (США), выдвинули лозунг: «Живые прототипы -- ключ к новой технике». Бионика явилась своеобразным мостом, связавшим биологию с математикой, физикой, химией и техникой.

Одна из важнейших целей бионики -- установить аналогии между физико-химическими и информационными процессами, встречающимися в технике, и соответствующими процессами в живой природе.

Специалиста-бионика привлекает все многообразие «технических идей», выработанных живой природой за многие миллионы лет эволюции.

Особое место среди задач бионики занимают разработка и конструирование систем управления и связи на основе использования знаний из биологии. Это -- бионика в узком смысле слова.

Бионика имеет важное значение для кибернетики, радиоэлектроники, аэронавтики, биологии, медицины, химии, материаловедения, строительства, архитектуры и др.

К задачам бионики относятся также освоение биологических методов добычи полезных ископаемых, технологии производства сложных веществ органической химии, строительных материалов и покрытий, которые использует живая природа.

Бионика учит искусству рационального копирования живой природы, изысканию технических условий целесообразного использования биологических объектов, процессов и явлений.

Один из возможных путей здесь -- функциональное (математическое, или программное) моделирование, заключающееся в изучении структурной схемы процесса, функций объекта, числовых характеристик этих функций, их назначения и изменения во времени.

Такой подход дает возможность изучать интересующий процесс математическими средствами, а техническое воплощение модели осуществить тогда, когда в принципе установлена ее эффективность и осталось проверить экономические, энергетические и другие возможности конструирования такого рода модели имеющимися техническими средствами.

Существует и другой путь -- физико-химическое моделирование, когда специалист в области бионики изучает биохимические и биофизические процессы с целью исследования принципов превращения (включая разложение и синтез) веществ, происходящих в живом организме. Этот путь более всего примыкает к химико-технологической проблематике и открывает новые возможности в развитии энергетики и химии полимеров.

Третий подход, развиваемый бионикой -- это непосредственное использование живых систем и биологических механизмов в технических системах. Такой подход принято называть методом обратного моделирования, так как в этом случае специалист-бионик изыскивает возможности и условия приспособления живых систем для решения чисто инженерных задач, иначе говоря, пытается моделировать на биологическом объекте техническое устройство или процесс.

Возникшая в ответ на запросы практики бионика послужила началом исследований, основанных на применении биологических знаний во всех областях техники.

бионика архитектура конусообразный конструкция

2 . Зарождение бионики

Достигнув определённого потолка в развитии искусственных механизмов, люди для дальнейшего поступательного движения вперёд стремятся позаимствовать те принципы и методы, с помощью которых созданы и функционируют живые организмы.

Неофициальный титул «отца бионика» принадлежит Леонардо да Винчи. Этот великий гений в истории цивилизации первым попытался использовать опыт природы при построении рукотворных машин. Из его чертежей и записей ясно, что при разработке собственного летательного аппарата главная роль им отводилась воспроизведению того же механизма, с помощью которого птицы машут крыльями и создают подъёмную силу (рис.1) . Эти идеи да Винчи были невостребованными вплоть до прошлого столетия, когда под воздействием развития кибернетики учёные обратили пристальное внимание на деятельность так называемых «живых систем» (то есть объектов природы).

Окончательно, как наука, бионика оформилась в 1960 году на симпозиуме учёных в Дайтоне.

Пионером использования принципов бионики при сооружении зданий стал великий каталонский архитектор конца XIX ? начала XX веков Антонио Гауди. Именно Гауди первым стал не просто привносить в архитектурные сооружения декоративные элементы природы, а придал постройкам характер окружающей среды.

Профессиональные архитекторы, ландшафтные дизайнеры и просто ценители прекрасного до сих пор не перестают восхищаться гениальными архитектурными решениями Гауди при сооружении Парка Гуэля (рис.2): чего стоит только своеобразная колоннада, выполненная в стиле античных портиков, представляющая из себя подобие сросшихся стволов деревьев.

Бионические принципы архитектуры в начале 1920-х годов воспринял и развил Рудольф Штайнер. В 1921 году Рудольф Штайнер создал свой «Гетеанум» (рис. 3), после чего и началось широкое применение бионики при проектировании зданий и сооружений.

Благодаря развитию научных методов, расширению базы знаний и появлению возможности детального математического моделирования архитекторы прошлого пришли к выводу, что большинство архитектурных принципов и законов, над которыми человечество опытным путём проб и ошибок билось тысячелетиями, находилось у нас под самым носом, в природе.

Поэтому главной задачей бионики в архитектуре является поиск в природных биологических системах оптимальных решений возникающих архитектурных задач. Идёт изучение законов формирования и структурообразования живых тканей, конструктивных систем живых организмов по принципу экономии материала, энергии и обеспечения надежности.

3 . Архитектурно - строительная бионика

Архитектурная бионика в недавнем прошлом - это осмысление природных форм в строительных конструкциях, новые возможности архитектурного формообразования.

Архитектурная бионика сегодня (необионика) - это попытка увязать экологические аспекты и высокие технологии с архитектурой.

Архитектурно-строительная бионика изучает законы формирования и структурообразования живых шуб, занимается анализом конструктивных систем живых организмов по принципу экономии материала, энергии и обеспечения надежности. Интенсивно изучаются органы чувств животных, внутренние механизмы реакции на окружающую среду и у животных, и у растений.

Немало замечательных сооружений в далеком прошлом человек создал, копируя архитектурные формы растительного мира. Всмотритесь в легкие африканские постройки, и вы увидите в них очертания ульев (рис.4), древневосточные пагоды напоминают стройные ели с тяжело висящими ветками (рис.5), мраморная колонна Парфенона -- олицетворение стройного ствола дерева (рис.6), колонна египетского храма подобна стеблю лотоса(рис.7), готическая архитектура-- воплощение в бесстрастном камне конструктивной логики, гармонии и целесообразности живого.

Вспомните знаменитые Кижи (рис.8). Их купола напоминают луковицы. Церковь в Филях (рис.9), как живой организм, уменьшается с высотой, развивается от центра к периферии. Вся она как бы трепещет, все в ней тонко и гармонично. Храм Василия Блаженного тот же главный ствол, от которого кверху и в сторону идет разветвление и размельчение форм (рис. 10).

Удивительное родство приемов! Словно зодчие договорились об общности своих творческих принципов. Полистав страницы истории строительного дела, можно найти еще множество примеров копирования человеком архитектоники живой природы. Однако необходимо еще раз подчеркнуть, что древнее строительное искусство было подобно организации живой природы лишь по форме. У природы зодчие учились гармоничности пропорций, логичному распределению объемов здания, подчинению второстепенного главному, верному сочетанию размеров деталей, конструктивной правде, но они не знали главного -- законов формообразования, секретов самоконструирования живого.

Внутренняя организация живого, конструктивная сторона листа, стебля злака и ствола дерева стали объектом исследования ученых более поздних времен. Эти исследования и заложили основу архитектурной бионики.

Яркий пример шубной архитектурной бионики -- полная аналогия строения стеблей злаков и современных высотных сооружений. Стебли злаковых растений способны выдерживать большие нагрузки и при этом не ломаться под тяжестью соцветия. Если ветер пригибает их к земле, они быстро восстанавливают вертикальное положение. Их строение сходно с конструкцией современных высотных фабричных труб.

Обе конструкции внутри полые. Склеренхимные тяжи стебля растения играют роль продольной арматуры. Междоузлия (узлы) стеблей -- кольца жесткости. Вдоль стенок стебля находятся овальные вертикальные пустоты. Стенки трубы имеют такое же конструктивное решение. Роль спиральной арматуры, размещенной у внешней стороны трубы, в стебле злаковых растений, выполняет тонкая кожица. Однако к своему конструктивному решению инженеры пришли самостоятельно, не «заглядывая» в природу. Идентичность строения была выявлена позже.

Бионика подтверждает, что многие человеческие изобретения имеют аналоги в живой природе, например, застежки «молния» и «липучки» были придуманы на основе строения пера птицы. Бородки пера различных порядков, оснащенные крючками, обеспечивают надежное сцепление.

Мы выяснили, что есть несколько направлений в архитектурной бионике: Конусообразные конструкции, Конструкции с предварительным напряжением, Оболочки, Конструкции, имеющие вид спирали, Сетчатые, решетчатые и ребристые конструкции. Сейчас мы их и рассмотрим.

4 . Конусообразные конструкции

В живой природе функция и форма тесно сближены и взаимно обусловлены. Образование механических тканей живых организмов связано с интенсивностью роста и влиянием многих внешних факторов. Поэтому для конструктивной формы, например, стволов и стеблей растений характерно распределение строительного материала по линиям максимальных напряжений. Опорные элементы организма обладают значительной частью его массы.

Одной из опорных форм в природе является конус. Он присутствует в конструктивном построении крон и стволов деревьев, стеблей и соцветий, грибов, раковин и пр. Среди конусообразных форм природы встречаются два начала.

Первое - это начало устойчивости. Оно выражается в форме статичного конуса, или конуса гравитации (конус основанием вниз). Это оптимальная форма для восприятия ветровых нагрузок и действия сил тяжести. Ее легко заметить в кроне или стволе ели (рис.11а), в шляпке или ножке белого гриба, сморчка обыкновенного, у гриба зонтика.

Второе начало - это начало развития, которое выражается в форме динамического конуса, или конуса роста (конус основанием вверх). Примерами конуса роста являются гриб бокальчик(рис.11б), гриб лисичка, слоевища некоторых видов лишайника кладонии.

Но чаще в природе проявляется взаимодействие двух конусов. На основании комбинаций двух одинаковых или разных по своему началу конусов возникают различные формообразования. Примером являются кроны многих деревьев, которые внизу начинают развиваться по принципу конуса роста, а заканчиваются по принципу конуса гравитационного - вершиной вверх. Архитекторы в своем творчестве нередко используют принцип конуса. Так, в конструкции Останкинской телебашни (рис.12) отчетливо виден конус гравитации. Принцип конуса роста лежит в основе построения водонапорной башни в Алжире. Ярким примером взаимодействия двух конусов является конструкция водонапорной башни известного русского архитектора В. Шухова (1896)(рис.13)

5 . Конструкции с предварительным напряжением

Среди травянистых растений нашей средней полосы широко распространено растение манжетка обыкновенная(рис.14). Его легко заметить по складчатой форме листьев и сверкающей капельке влаги, которая часто скапливается у основания листа. Именно благодаря складчатой форме листьев растение и получило свое название - сложенные ровными складочками его листья напоминают старинные кружевные манжеты.

Ребристая форма листа придает ему, по сравнению с такими же листьями, имеющими гладкую поверхность, дополнительную жесткость, прочность и устойчивость в пространстве.

Лист манжетки благодаря ребристой форме удерживает тяжелую каплю воды и не сминается под тяжестью во много раз большей, чем его вес. В этом заключается одна из интереснейших закономерностей природы - сопротивляемость конструкций по форме

Она проявляется не только в складчатых листьях, но и тогда, когда листья или лепестки растений свертываются в трубочку, закручиваются в спираль, образуют причудливые желоба, то есть принимают другую пространственную форму без затрат на это дополнительного строительного материала. Такое изменение формы в пространстве обеспечивает растению, его листьям и цветкам наибольшую прочность и позволяет, например, закрученным длинным листьям рогоза держаться в вертикальном положении, а нежным, длинным лепесткам венерина башмачка противостоять ветру.

Принцип сопротивляемости конструкций по форме, существующий в природе, нашел широкое применение в современном строительстве. Складчатая конструкция - одна из простейших среди многообразия пространственных конструкций. Образованные из плоских поверхностей, они просты в изготовлении и в монтаже. Они могут перекрывать весьма большие сооружения, например, зал ожидания на Курском вокзале (рис.15)или легкоатлетический (рис.16).

6 . Оболочки

В мастерской природы часто встречаются конструкции в виде сводов различных пространственных форм (скорлупа ореха и яйца, панцири и раковины животных, гладкие листья, лепестки растений и др.). Пространственно изогнутые и тонкостенные, они, благодаря непрерывности и плавности формы, обладают свойством равномерного распределения сил по всему сечению. Геометрия формы помогает этим сводчатым конструкциям стать прочнее. Именно потому, что лепесток цветка изогнут, он выдерживает удары капель дождя, садящихся на него насекомых, а тонкие сводные панцири морских ежей, крабов и раковины моллюсков - давление воды в глубине моря.

Идеальную по прочности форму изобрела природа для тонкой яичной скорлупы. В ней также нагрузка из одной точки передается на всю ее поверхность. Но своеобразие этой конструкции не только в особой геометрической форме. Несмотря на то, что толщина скорлупы равна примерно 0,3мм, она состоит из 7 слоев, каждый несет свою определенную функцию. Слои не расслаиваются даже при самых резких изменениях температуры и влажности, представляя собой яркий пример совместимости материалов с различными физико-механическими свойствами. Повышенную прочность яичной скорлупе придает еще тонкая эластичная пленка, которая превращает скорлупу в конструкцию с предварительным напряжением.

С развитием городов и ростом населения перед строителями встала задача проектирования больших по размеру зданий без тяжелых трудоемких покрытий и промежуточных опор. Поэтому легкие и прочные, тонкостенные и экономичные природные сводчатые конструкции заинтересовали архитекторов. Принцип конструкции этих оболочек лег в основу создания легких, большепролетных стальных и железобетонных покрытий различной кривизны, которые нашли широкое применение при строительстве спортивных комплексов, кинотеатров, выставочных павильонов и т. д. Основное качество таких покрытий - легкость, и чем больше пролет, тем легче купол. В современных постройках толщина купола измеряется миллиметрами, и получили такие купола название оболочек-скорлуп.

Примерами таких конструкций являются кровля выставочного павильона в Париже, напоминающая лепесток цветка, она перекрывает без опор пролет более 200 м, крыша выставочного павильона в Ереване, купол цирка в Казани (рис.17), крыша торгового центра в Челябинске (рис.18), имеющая вид оболочки двоякой кривизны, покрывающей без единой промежуточной опоры площадь более гектара.

7 . Конструкции, имеющие вид спирали

Спираль - одна из форм проявления движения, роста и развития жизни. По закону спирали развивается Галактика и живой организм, например, растения. Первым, кто отрыл, что растущее растение описывает спираль, был Чарльз Дарвин. Описывая спираль, вытягиваются стебли растений, двигаясь по спирали, раскрываются лепестки некоторых цветов, например, флоксов, развертываются побеги папоротника.

Спираль в то же время является в природе и сдерживающим началом, направленным на экономию энергии и материала.

Лишь изменяя форму конструкции, придавая ей вид спирали, природа, таким образом, достигает в конструкции дополнительную жесткость и устойчивость в пространстве.

Так, например, завиваются в спираль, приобретая этим дополнительную жесткость, тонкие и длинные стебли огурцов или тыквы, длинные листья рогоза и тонкие ножки грибов. Раковины простейших одноклеточных организмов форманифер и раковины моллюсков, закрученные в одной или разных плоскостях (турбоспирали) - это также проявление способа достижения наибольшей прочности при экономном расходовании материала. Благодаря завитой форме такие тонкостенные конструкции выдерживают большое гидродавление при погружении на глубину.

Закрученная форма природных конструкций, как способ достижения большой устойчивости в пространстве при экономном расходовании «строительного» материала, подсказала архитекторам новую форму спиралевидной основы здания - турбосомы. Турбосома аэродинамична, любые ветры лишь обтекают ее тело, не раскачивая и не принося ей никакого вреда. Она может быть использована при строительстве высотных домов.

Спиральные башни «Mode Gakuen» (рис.19)это 170 метровое, 36-этажное учебное заведение, расположенное на главной улице города Нагоя, перед станцией Нагоя, в префектуре Айти (Aichi), Япония. Форма зданий похожа на крыло - с широкой частью на вершине. Здание постепенно меняет ось вращения с высотой, благодаря чему форма здания образует изгиб. Форма спиральных башен немного меняется при просмотре с разных углов обзора, благодаря чему они выглядят элегантно, но динамично. Сильная внутренняя вертикальная труба опоры виднеется сквозь отверстия между тремя крыльями, что подчёркивает смелый дизайн, но и не выбивается из общего вида.

8 . Сетчатые, решетчатые и ребристые конструкци и

Широкое распространение в природе имеют плоские и пространственно-изогнутые ребристые, сетчатые и перекрестные (решетчатые) конструкции, в которых основной материал концентрируется по линиям главных напряжений.

Тонкий лист растения или прозрачное крылышко насекомого обладают достаточной механической прочностью благодаря разветвляющейся в них сетке жилок.

Этот каркас выполняет основную (несущую) роль, тогда как другие элементы конструкции, например, пленка листа или мембрана крыла, могут достигать минимального сечения. Это также один из примеров достижения прочности при минимальной затрате материала. Тонкие крылышки стрекозы коромысла делают до 100 взмахов в секунду, шмеля - более 200, комнатной мухи - до 300, а комара дергуна - до 1000 взмахов.

Заинтересовал архитекторов и принцип конструкции листьев растений. Лист растения обладает достаточной механической прочностью, которая в значительной степени зависит от жилок, пронизывающих его плоскость от основания до верхушки.

Особенно привлек к себе внимание лист тропического растения Виктории регии (рис.28), встречающегося в водах Амазонки и Ориноко. Плавающие листья этой крупной водяной кувшинки вырастают до 2-х метров в диаметре и выдерживают, не погружаясь в воду, вес до 50 кг. С нижней стороны этот лист как бы укреплен толстыми и прочными прожилками, похожими на канаты. Продольно изогнутые жилки скреплены между собой серповидными поперечными диафрагмами. Такая конструкция создает прочную основу для размещения между жилками тонкой полупрозрачной пленки листа. Взяв за основу жилкование листа Виктории регии, итальянский архитектор П. Нерви сконструировал плоское ребристое покрытие фабрики Гатти в Риме и покрытие большого зала Туринской выставки, добившись большого конструктивного и эстетического эффекта.

Принцип построения листа Виктории регии использовали наши архитекторы при сооружении потолка фойе Тульского драматического театра (рис.20). Они протянули по потолку железобетонные нервюры, которые несут огромный пролет.

Используется в архитектурной практике и принцип построения природных пространственно-решетчатых систем: радиолярий, диатомовых водорослей, некоторых грибов, раковин, даже микроструктура головки тазобедренной кости. В этих моделях особенно ярко проявляется принцип распределения материала с расчетом на самые случайные и разнонаправленные действия нагрузок. Например, структура головки тазобедренной кости построена так, что никогда не работает на излом, а только на сжатие и растяжение. Подобная система может быть использована в конструировании опорных рам, ферм, подъемных кранов.

9 . Примеры конструкций

На рисунке 21.в. изображена шаровидная морская звезда. Ее опорный скелет (рис. 21.б) состоит из известковых пластинок, соединенных между собой мускулами. Мелкие пластинки образуют кожу. Шарообразное расположение скелетных пластинок подсказало строителям конструкцию жилого дома и других строительных сооружений. По аналогии с шарообразной морской звездой в Англии построено укрытие для радиолокатора (рис.21.а). Диаметр его 33,5 м, оболочка ребристая. Ребра выполнены из алюминиевого сплава. Материалом для оболочки служит полиэфирный стеклопластик. Конструкция состоит из 775 элементов треугольной формы.

Радиолярии (простейшие организмы) обитают в теплых морях. Всю жизнь проводят в движении, образуют планктон - пищу для крупных морских животных. На рисунке 22 изображена радиолярия (организм отряда Nasselaria) в форме решетчатого колокола с перетяжками и многочисленными иглами, а на рисунке 23 - в форме радиально расположенных и одинаково развитых игл (организм отряда Acantharia). В центре радиолярий расположена капсула - скелетное образование для защиты ядра. Стенки капсулы пористые: для связи с окружающей средой. Великий конструктор природа придала им изящный вид.

Их форма заинтересовала архитекторов. По типу, например, решетки радиолярии (рис. 24) (организм отряда Acantharia) выполняется проект строительной конструкции с перекрытием большой площади. В Москве и в других городах нашей страны можно встретить сейчас дома, элементы строительных конструкций которых заимствованы у радиолярий

Заимствуя у природы принцип конуса и другие секреты, строители соорудили Останкинскую телевизионную башню (рис.12), утолщенную у основания и остроконечную. Внешне она напоминает стебель или иглу. Ее общая высота 540 метров 74 сантиметра. Масса ее 55 тысяч тонн. Внутри смонтировано семь лифтов, из них четыре скоростных. За 58с можно подняться на смотровую площадку, на высоту 337 м. При сильном ветре башня может раскачиваться до 10 м, сохраняя при этом свою прочность. Внутри башни протянуты 150 стальных канатов подобно тому, как в стебле пшеницы или бамбука внутри имеются продольные волокна. Они спрятаны под бетонной «рубашкой». Вот почему башня прочная и гибкая. Она может выдерживать ветер в 15 баллов и землетрясение в 8 баллов. Надежность ее рассчитана на 300 лет.

Растения не только выдерживают механические нагрузки, но и реагируют в течение дня на изменение света, температуры, влажности. Эти способности растений использовал советский архитектор Ю.С.Лебедев. На выставке, проходившей в Москве в 1982 г., демонстрировался созданный им макет жилого дома (рис.25), который, словно цветок подсолнечника, поворачивался в течение дня вслед за солнцем.

В Голландии возведены 24 необычных дома (рис.26). Внешне они напоминают деревья. Первый этаж построен в виде ствола, а на нем - гигантские кубы, в которых размещены жилые помещения.

Изучение слоистого строения скорлупы куриного яйца помогает инженерам создать новые строительные слоистые материалы с отличными механическими свойствами, легкие, пропускающие воздух и препятствующие проникновению влаги. На рисунке изображен жилой дом в форме яйца (г. Базель, Швейцария) (рис.27). Наибольший диаметр дома равен 7,2м. Оболочка его трехслойная, замкнутая, эллиптическая, из полиэфирного стеклопластика. Дом без углов, с двумя окнами, на трех опорах. На постройку такого дома расходуется небольшое количество материала.

Заключение

Архитектурная бионика - это новая страница в развитии строительной техники и зодчества, это осознанная, вызванная требованиями нашего времени необходимость изучить инженерные решения природы, познать законы, секреты ее строительного мастерства, это целенаправленный поиск оригинальных архитектурных форм, идеально рассчитанных самой природой.

В том, что архитекторы и строители, как и радиотехники, электроники, кораблестроители, авиаконструкторы, машиностроители и специалисты многих других отраслей техники, обратились к природе, к ее строительному искусству, нет ничего случайного. Ведь архитектурно-строительная мастерская природы без устали работает по крайней мере 2700 млн. лет, в то время как у человека строительная практика исчисляется лишь несколькими тысячелетиями существования материальной культуры.

В живой природе все предельно гармонично. В архитектуре заимствуется гармония содержания и формы, обогащается эстетика. Природа порождает у человека чувство жизнеутверждения, стремления к свету, теплу. Все это архитекторы стремятся отразить в камне, металле, кирпиче, бетоне.

Список использованной литературы

1. Архитектурная бионика. Под редакцией Ю.С. Лебедева - М. Стройиздат, 1990. -269с.

2. Вопросы бионики. Отв. ред. М.Г. Гаазе-Рапопорт, М., 1967.

3. Бондарь, Е.В. Социальная экология: Учебное пособие / В.Бондарь. Ставрополь: Изд-во СГУ, 2005.- 149 с.

4. «Мастерская природы» Художник А.Семенцов-Огиевский -М.: Изобразительное искусство,1981г.

5. Ресурсы интернета: www.wikipedia.org http://www.wikipedia.org

Размещено на Allbest.ru

...

Подобные документы

    Архитектурно-строительная бионика. Принципы "зеленой" (органической) архитектуры. Творчество Р. Пиетиля. Основные постройки Аалто. Проект инженера-мостовика Г. Эйфеля. Аналогия строения стеблей злаков и некоторых современных высотных сооружений.

    курсовая работа , добавлен 15.09.2013

    Архитектурный стиль как совокупность характерных черт и признаков архитектуры. История и основные этапы развития архитектуры времен Античности, Средневековья, Возрождения, барокко, классицизма. Факторы, повялившие на формирование современной архитектуры.

    презентация , добавлен 05.12.2013

    Город как природно-техногенная система. Зонирование территории городов - природные аналогии. Физические факторы в городах. Оценка воздействия физических факторов в городской среде. Архитектурная бионика, использование природных аналогий в архитектуре.

    реферат , добавлен 15.10.2014

    Развитие доминирующих типов монументального строительства. Комбинация базилики и центрического сооружения. Характеристика типов структур и конструкций в архитектуре Византии. Основные композиционные типы церковных сооружений в романской архитектуре.

    контрольная работа , добавлен 11.04.2019

    Понятие архитектуры как искусства и науки строить, проектировать здания и сооружения. Архитектурные стили, востребованные в архитектуре, их применение в строительстве. Особенности византийского и готического стилей. Связь развития архитектуры и времени.

    презентация , добавлен 18.05.2015

    Сущность и специфика львовского классицизма, его отражение в архитектуре города. Распространение данного направления в конце XIX века. Исторические предпосылки развития эклектики. Развитие нового направления в архитектуре Львова - модерна в ХХ веке.

    презентация , добавлен 18.12.2010

    Появление новых течений в архитектуре. Принципы архитектуры постмодернима. Философия Альдо Росси и ее воплощение в архитектуре. Приемы и принципы постмодернистской архитектуры. Работа с архитектурным объектом как с "текстом" и в пространстве смыслов.

    реферат , добавлен 30.03.2015

    Священные, религиозные и святые здания. Стили храмовой архитектуры. Восточная школа культовой архитектуры. Архитектура Древнего Китая. Религии, оставившие свой след в архитектуре Китая. Основные исторические этапы развития китайской культовой архитектуры.

    реферат , добавлен 25.05.2012

    История происхождения, особенности формирования и характеристика стиля барокко, его роль в мировой архитектуре. Описание храмовой архитектуры эпохи барокко. Специфические черты русского барокко, сущность и значение пятиглавых храмов в его архитектуре.

    реферат , добавлен 17.04.2010

    Стиль архитектуры модерна и его принципиальные отличия. Причины его появления и заката. Пути развития и различные течения модерна в России. Орнамент как органическая часть сооружения. Примеры использования живописью и графикой приемов орнаментализации.

Лозунг бионики: «Природа знает лучше». Что же это за наука такая? Уже само название и такой девиз дают нам понять, что бионика связана с природой. Многие из нас ежедневно сталкиваются с элементами и результатами деятельности науки бионики, даже не подозревая об этом.

Вы слышали о такой науке, как бионика?

Биология - популярное знание, с которым нас знакомят ещё в школе. Почему-то многие считают, что бионика - один из подразделов биологии. На самом деле это утверждение не совсем точное. Действительно, в узком смысле слова бионика - это наука, изучающая живые организмы. Но чаще всего мы привыкли ассоциировать с этим учением нечто другое. Прикладная бионика - наука, которая сочетает в себе биологию и технику.

Предмет и объект бионических исследований

Что изучает бионика? Чтобы ответить на этот вопрос, нужно рассмотреть структурное деление самого учения.

Биологическая бионика исследует природу такой, какая она есть, без попытки вмешательства. Объектом её изучения являются процессы, происходящие внутри

Теоретическая бионика занимается изучением тех принципов, которые были замечены в природе, и на их основе создаёт теоретическую модель, в дальнейшем применяемую в технологиях.

Практическая (техническая) бионика - это применение теоретических моделей на практике. Так сказать, практическое внедрение природы в технический мир.

Откуда всё начиналось?

Отцом бионики называют великого Леонардо да Винчи. В записях этого гения можно найти первые попытки технического воплощения природных механизмов. Чертежи да Винчи иллюстрируют его стремление создать летательный аппарат, способный двигать крыльями, как при полёте птицы. В своё время такие идеи были слишком дерзкими, чтобы стать востребованными. Они заставили обратить на себя внимание значительно позже.

Первым, кто стал применять принципы бионики в архитектуре, был Антони Гауди-и-Курнет. Его имя прочно впечатано в историю этой науки. Архитектурные сооружения по проектам великого Гауди впечатляли в момент их сооружения, и такой же восторг они вызывают через много лет у современных наблюдателей.

Следующим, кто поддержал идею симбиоза природы и технологий, стал Под его руководством началось широкое применение бионических принципов в проектировании зданий.

Утверждение бионики как самостоятельной науки произошло лишь в 1960 году на научном симпозиуме в Дайтоне.

Развитие компьютерной техники и математического моделирования позволяют современным архитекторам намного быстрее и с большей точностью воплощать в архитектуре и других отраслях подсказки природы.

Природные прототипы технических изобретений

Самым простым примером проявления науки бионики является изобретение шарниров. Всем знакомое крепление, основанное на принципе вращения одной части конструкции вокруг другой. Такой принцип используют морские ракушки, для того чтобы управлять двумя своими створками и по надобности открывать их или закрывать. Тихоокеанские сердцевидки-великаны достигают размеров 15-20 см. Шарнирный принцип в соединении их ракушек хорошо просматривается невооружённым взглядом. Мелкие представители этого вида применяют такой же способ фиксации створок.

В быту мы часто используем разнообразные пинцеты. Природным аналогом такого прибора становится острый и клещеобразный клюв веретенника. Эти птицы применяют тонкий клюв, втыкая его в мягкую почву и доставая оттуда мелких жуков, червяков и прочее.

Многие современные приборы и приспособления оснащены присосками. Например, их используют для усовершенствования конструкций ножек различных кухонных приспособлений, чтобы избежать их скольжения во время работы. Также присосками оснащают специальную обувь мойщиков окон высотных зданий для обеспечения их безопасной фиксации. Это нехитрое приспособление тоже позаимствовано у природы. Квакша, имея на ногах присоски, необычайно ловко держится на гладких и скользких листьях растений, а осьминогу они необходимы для тесного контакта со своими жертвами.

Можно найти множество таких примеров. Бионика - это как раз та наука, которая помогает человеку заимствовать у природы технические решения для своих изобретений.

Кто первый - природа или люди?

Иногда случается, что то или иное изобретение человечества уже давно «запатентовано» природой. То есть изобретатели, создавая нечто, не копируют, а придумывают сами технологию или принцип работы, а позже оказывается, что в естественной природе это уже давно существует, и можно было просто подсмотреть и перенять.

Так произошло с обычной липучей застёжкой, которая используется человеком для застегивания одежды. Было доказано, что в для сцепления тонких бородочек между собой тоже применяются крючочки, подобно тем, которые есть на застёжке-липучке.

В строении фабричных труб наблюдается аналогия с полыми стеблями злаков. Продольная арматура, используемая в трубах, сходна со склеренхимными тяжами в стебле. Стальные кольца жёсткости - междоузлия. Тонкая кожица с внешней стороны стебля - это аналог спиральной арматуры в строении труб. Несмотря на колоссальное сходство структуры, учёные самостоятельно изобрели именно такой метод постройки фабричных труб, а уже позже увидели тождество такого строения с природными элементами.

Бионика и медицина

Применение бионики в медицине даёт возможность спасти жизнь многим пациентам. Не прекращаясь, ведутся работы по созданию искусственных органов, способных функционировать в симбиозе с организмом человека.

Первым посчастливилось испытать датчанину Деннису Аабо. Он потерял половину руки, но сейчас имеет возможность воспринимать предметы на ощупь с помощью изобретения медиков. Его протез подключён к нервным окончаниям пострадавшей конечности. Сенсоры искусственных пальцев способны собирать информацию о прикосновении к предметам и передавать её в мозг. Конструкция на данный момент ещё не доработана, она очень громоздкая, что затрудняет её использование в быту, но уже сейчас можно назвать такую технологию настоящим открытием.

Все исследования в данном направлении полностью основываются на копировании природных процессов и механизмов и их техническом исполнении. Это и есть медицинская бионика. Отзывы учёных гласят, что в скором времени их труды дадут возможность менять износившиеся живые органы человека и вместо них использовать механические прототипы. Это действительно станет величайшим прорывом в медицине.

Бионика в архитектуре

Архитектурно-строительная бионика - особая отрасль бионической науки, задачей которой становится органическое воссоединение архитектуры и природы. В последнее время всё чаще при проектировании современных конструкций обращаются к бионическим принципам, позаимствованным у живых организмов.

Сегодня архитектурная бионика стала отдельным архитектурным стилем. Рождалась она с простого копирования форм, а сейчас задачей этой науки стало перенять принципы, организационные особенности и технически их воплотить.

Иногда такой архитектурный стиль называют экостилем. Всё потому, что основные правила бионики - это:

  • поиск оптимальных решений;
  • принцип экономии материалов;
  • принцип максимальной экологичности;
  • принцип экономии энергии.

Как видите, бионика в архитектуре - это не только впечатляющие формы, но и прогрессивные технологии, позволяющие создавать сооружение, отвечающие современным требованиям.

Характеристики архитектурных бионических строений

Опираясь на былой опыт в архитектуре и строительстве, можно сказать, что все сооружения человека непрочны и недолговечны, если они не используют законы природы. Бионические здания, помимо удивительных форм и смелых архитектурных решений, обладают стойкостью, способностью выдерживать неблагоприятные природные явления и катаклизмы.

В экстерьере зданий, построенных в этом стиле, могут просматриваться элементы рельефов, форм, контуров, умело скопированные инженерами-проектировщиками с живых, природных объектов и виртуозно воплощенные архитекторами-строителями.

Если вдруг при созерцании архитектурного объекта покажется, что вы смотрите на произведение искусства, с большой вероятностью перед вами строение в стиле бионика. Примеры таких конструкций можно увидеть практически во всех столицах стран и больших технологически развитых городах мира.

Конструкция нового тысячелетия

Ещё в 90-х годах испанской командой архитекторов был создан проект здания, основывающийся на совершенно новой концепции. Это 300-этажное строение, высота которого будет превышать 1200 м. Задумано, что передвижение по этой башне будет происходить с помощью четырёх сотен вертикальных и горизонтальных лифтов, скорость которых - 15 м/с. Страной, согласившейся спонсировать данный проект, оказался Китай. Для строительства был выбран самый густонаселённый город - Шанхай. Воплощение проекта позволит решить демографическую проблему региона.

Башня будет иметь полностью бионическую структуру. Архитекторы считают, что только это сможет обеспечить прочность и долговечность конструкции. Прототипом строения является дерево кипарис. Архитектурная композиция будет иметь не только цилиндрическую форму, похожую на ствол дерева, но и «корни» — новый вид бионического фундамента.

Наружное покрытие здания - это пластичный и воздухопроницаемый материал, имитирующий кору дерева. Система кондиционирования этого вертикального города будет аналогом теплорегулирующей функции кожи.

По прогнозам учёных и архитекторов, такое здание не останется единственным в своём роде. После успешного воплощения количество бионических строений в архитектуре планеты будет только увеличиваться.

Бионические здания вокруг нас

В каких известных творениях была использована наука бионика? Примеры таких сооружений несложно отыскать. Взять хотя бы процесс создания Эйфелевой башни. Долгое время ходили слухи, что этот 300-метровый символ Франции построен по чертежам неизвестного арабского инженера. Позже была выявлена полная её аналогия со строением большой берцовой кости человека.

Кроме башни Эйфеля во всём мире можно найти множество примеров бионических сооружений:

  • возводилась по аналогии с цветком лотоса.
  • Пекинский национальный оперный театр - имитация водяной капли.
  • Плавательный комплекс в Пекине. Внешне повторяет кристаллическую структуру решётки воды. Удивительное дизайнерское решение совмещает и полезную возможность конструкции аккумулировать энергию солнца и в дальнейшем использовать её для питания всех электроприборов, работающих в здании.
  • Небоскрёб "Аква" внешне похож на поток падающей воды. Находится в Чикаго.
  • Дом основателя архитектурной бионики Антонио Гауди - это одно из первых бионических сооружений. До сегодняшнего дня он сохранил свою эстетическую ценность и остаётся одним из самых популярных туристических объектов в Барселоне.

Знания, необходимые каждому

Подводя итоги, можно смело заявить: всё, что изучает бионика, актуально и нужно для развития современного общества. Каждый должен ознакомиться с научными принципами бионики. Без этой науки невозможно представить технический прогресс во многих сферах деятельности человека. Бионика - это наше будущее в полной гармонии с природой.

Архитектурно-строительная бионика изучает законы формирования и структурообразования живых тканей, занимается анализом конструктивных систем живых организмов по принципу экономии материала, энергии и обеспечения надежности. Нейробионика изучает работу мозга, исследует механизмы памяти. Интенсивно изучаются органы чувств животных, внутренние механизмы реакции на окружающую среду и у животных, и у растений. Яркий пример архитектурно-строительной бионики - полная аналогия строения стеблей злаков и современных высотных сооружений. Стебли злаковых растений способны выдерживать большие нагрузки и при этом не ломаться под тяжестью соцветия. Если ветер пригибает их к земле, они быстро восстанавливают вертикальное положение. В чём же секрет? Оказывается, их строение сходно с конструкцией современных высотных фабричных труб - одним из последних достижений инженерной мысли. Обе конструкции внутри полые. Склеренхимные тяжи стебля растения играют роль продольной арматуры. Междоузлия (узлы?) стеблей - кольца жесткости. Вдоль стенок стебля находятся овальные вертикальные пустоты. Стенки трубы имеют такое же конструктивное решение. Роль спиральной арматуры, размещенной у внешней стороны трубы в стебле злаковых растений, выполняет тонкая кожица. Однако к своему конструктивному решению инженеры пришли самостоятельно, не «заглядывая» в природу. Идентичность строения была выявлена позже. В последние годы бионика подтверждает, что большинство человеческих изобретений уже «запатентовано» природой. Такое изобретение XX века, как застежки «молния» и «липучки», было сделано на основе строения пера птицы. Бородки пера различных порядков, оснащенные крючками, обеспечивают надежное сцепление. Известные испанские архитекторы М. Р. Сервера и Х. Плоз, активные приверженцы бионики, с 1985 г. начали исследования «динамических структур», а в 1991 г. организовали «Общество поддержки инноваций в архитектуре». Группа под их руководством, в состав которой вошли архитекторы, инженеры, дизайнеры, биологи и психологи, разработала проект «Вертикальный бионический город-башня». Через 15 лет в Шанхае должен появиться город-башня (по прогнозам ученых, через 20 лет численность Шанхая может достигнуть 30 млн человек). Город-башня рассчитан на 100 тысяч человек, в основу проекта положен «принцип конструкции дерева».

Башня-город будет иметь форму кипариса высотой 1228 м с обхватом у основания 133 на 100 м, а в самой широкой точке 166 на 133 м. В башне будет 300 этажей, и расположены они будут в 12 вертикальных кварталах по 80 этажей (12 x 80 = 960; 960!=300). Между кварталами - перекрытия-стяжки, которые играют роль несущей конструкции для каждого уровня-квартала. Внутри кварталов - разновысокие дома с вертикальными садами. Эта тщательно продуманная конструкция аналогична строению ветвей и всей кроны кипариса. Стоять башня будет на свайном фундаменте по принципу гармошки, который не заглубляется, а развивается во все стороны по мере набора высоты - аналогично тому, как развивается корневая система дерева. Ветровые колебания верхних этажей сведены к минимуму: воздух легко проходит сквозь конструкцию башни. Для облицовки башни будет использован специальный пластичный материал, имитирующий пористую поверхность кожи. Если строительство пройдет успешно, планируется построить ещё несколько таких зданий-городов.

В архитектурно-строительной бионике большое внимание уделяется новым строительным технологиям. Например, в области разработок эффективных и безотходных строительных технологий перспективным направлением является создание слоистых конструкций. Идея заимствована у глубоководных моллюсков. Их прочные ракушки, например у широко распространенного «морского уха», состоят из чередующихся жестких и мягких пластинок. Когда жесткая пластинка трескается, то деформация поглощается мягким слоем и трещина не идет дальше. Такая технология может быть использована и для покрытия автомобилей.

Каждое живое существо на планете является совершенной работающей системой, приспособленной к окружающей среде. Жизнеспособность таких систем - результат эволюции многих миллионов лет. Раскрывая секреты устройства живых организмов, можно получить новые возможности в архитектуре сооружений. Закономерно возникла необходимость в создании нового направления в науке, суть которого - находить и исследовать такие секреты. Таким направлением стала бионика, которая объединила в себе познания биологии и техники. Бионика призвана решать инженерно-технические задачи, основываясь на результатах исследований живой материи.

Вот несколько биологических конструкций, используемых в архитектуре:

  • паутина - необычайно легкий, экономичный сетчатый материал
  • пчелиные соты, воск
  • муравьиное гнездо. Принцип его построения напоминает о зданиях, возводимых людьми. Имеются подвальные помещения, каждое из которых имеет свое предназначение
  • мягкая мочалка. Ее необычайный узор подходит для изготовления прочных и одновременно элегантных конструкций, которые, например, можно использовать как большие емкости для перевозки воды или масла
  • клеточная мембрана. Двойной переплет жировых китаров, обволакивающий живую клетку, уже используется в так называемой микро-архитектуре.

История бионики

Первые попытки использовать бионику в строительстве предпринял Антонио Гауди. Созданный им Парк Гуэля известен и как «природа, застывшая в камне». В 1921 г. к теме бионики в архитектуре обращается Рудольф Штайнер Гетеанум.

К началу 1980 г. благодаря многолетним трудам специалистов из ЦНИЭЛАБ (Центральная Научно-исследовательская и экспериментально-проектная лаборатория архитектурной бионики), архитектурная бионика признана как новое независимое направление в архитектуре. За это время построено уже немало зданий в биостиле. К ним относятся здание правления NMB Bank в Нидерландах, здание Сиднейской оперы в Австралии, небоскреб SONY в Японии, «Дом Дельфин» в Санкт-Петербурге и другие.

С большим нетерпением весь мир ожидает осуществления проекта башни-города в Шанхае. Ее форма напоминает форму кипариса высотой 1228 м. Небоскреб будет насчитывать 300 этажей, расположенных в двенадцати вертикальных кварталах. Опорой этого сооружения будут сваи, которые под воздействием тяжести вместо того, чтобы углубляться, будут расширяться по принципу гармошки. Построение такого города-башни поможет в решении проблемы перенаселенности Китая, так как он рассчитан примерно на 100 тысяч жителей. «Кипарис» будет возведен с учетом всех требований архитектурной бионики. Создатели этого проекта Кавьер Пиоф и Роза Тервера скромно заявили: «Природа сделала это до нас и лучше нас».

Бионика в архитектуре - это не просто искривленность очертаний форм, внешнее подобие раковинам моллюсков, птичьей скорлупе, пчелиным сотам, ветвям лесной чащи и т.д. Прежде всего это более удобные, более гармоничные, более надежные пространства жизнедеятельности человека. Метод архитектурной бионики объединяет в себе абстрактное и конкретное - законы математики и эмоции. Он создает предпосылки для синтеза науки и искусства.

Бионика в вашем доме

То, какой стиль мы выберем для своего нового дома или дачи, зависит только от нашей фантазии и материальных возможностей. Бионика доказала, что архитектура - это не только палочки и кирпичики. Применить элементы бионики у себя дома или на участке может каждый.

В интерьере - это, прежде всего, светильники и мебель, формы для которых позаимствованы у самой природы. Их, кстати, можно изготовить своими руками. Большой размах для фантазии предоставляет выбор лестниц (внешних или внутренних). Они могут быть пространственных форм, спиральные, из комбинированных материалов.

Выбирая строительные материалы для дома, лучше отдать предпочтение тем, которые не просто долговечны, но и лучше сохраняют тепло. Это обеспечит в будущем экономию электроэнергии на обогревателях и кондиционерах.

Ландшафт на участке нетрудно сделать неповторимым. Для этого лишь обратите внимание на уже имеющиеся камни, ветви, трещины и т.д. Применив немного фантазии, можно создать альпийскую горку (сооружение из камней и растительности, присущей высокогорному климату).
Если имеется большое старое дерево, не спешите его пилить. Его дупляные полости можно использовать, например, как бар для напитков или даже как беседку для отдыха. Здесь не нужен будет кондиционер, так как даже в зной дерево обеспечит постоянную температуру примерно 22 градуса.

Как показывает практика, потенциал неизученных секретов природы огромен. Не надо только бояться их изучать, не надо ограждаться от природы стенами построек, разрушая при этом наш общий дом.

Люди всегда стремились к комфортабельному жилью, но не всегда уделяли внимание внешнему облику архитектуры. Примером того может послужить архитектура советских времён, которой присущ-конструктивизм, рационализм, и брутализм, что целиком и полностью противостоит принципам био-тека – «нео-органической» архитектуры. Бионическая архитектура в большей свой степени изящнее и эстетичнее смотрится по сравнению с угловатостью и прямолинейностью того же конструктивизма. По сохранившейся архитектуре советского времени мы можем убедиться в этом.

На сегодняшний день бионические формы получили широкое распространение в предметной среде, окружающей человека начиная с древнего мира, когда впервые начали применять природные формы в ювелирных изделиях, мебели, оружии и до наших дней. За последнее время всё больше и больше биоформы - .(от греч. bios - жизнь и morphe - форма) живые формы, оказывают влияние на всё, что создаётся человеком от бытовой техники и медицинского оборудования до целых городов. С развитием технологий и появлением новых материалов возможности использования бионических форм в дизайне и архитектуре становятся практически безграничными. Ссылаясь на всё выше перечисленное, актуальность выбранной мною темы не может быть оспорима.

Само понятие бионика появилось в начале двадцатого века. Название науки «бионика» впервые предложено американским учёным Джеком Стилом и принято на Первом симпозиуме по бионике, проходившем в г. Дайтоне (США) в 1960 г. (в симпозиуме принимали участие советские ученые: А.И. Берг, Б.С. Сотсков и др.) В учебниках по архитектуре мы бы могли прочитать следующее: Бионика (от греч. bion –элемент жизни, буквально – живущий) – это наука, пограничная между биологией и техникой, решающая инженерные задачи на основе анализа структуры и жизнедеятености организмов. Если вспомнит Леонардо да Винчи, который пытался построить летательный аппарат с помощью птичьих крыльев, то можно сразу представить что из себя представляет бионический стиль. Именно ему принадлежать первые идеи применения знаний о живой природе для решения инженерных задач.

Сделав анализ по всему почитанному мной, касающееся бионической архитектуре, попробую дать свою характеристику бионики – это наука об использовании в строительстве зданий принципов подобные живому организму, все прообразы берутся с живой природы. Основу бионики составляют исследования по моделированию различных биологических организмов.

Приведу небольшую классификацию био-тека, различают:

1. биологическую бионику, изучающую процессы, происходящие в биологических системах;

2. теоретическую бионику, которая строит математические модели этих процессов;

3. техническую бионику, применяющую модели теоретической бионики для решения инженерных задач;
4. архитектурную бионику, о которой мы будем говорить далее.

Архитектурная бионика

В мировой архитектурной практике за прошедшие 40 лет использование закономерностей формообразования живой природы приобрело новое качество и получило название архитектурная бионика.

Бионика породила новые, необычные архитектурные формы, целесообразные в функционально-утилитарном отношении и оригинальные по своим эстетическим качествам. Это не могло не вызвать к ним интереса со стороны архитекторов и инженеров.

В современной архитектуре появились новые концептуальные движения архитекторов таких, как: Грег Линн, Фрай Отто, Бэйтс Смарт, Николас Гримшоу, Сантьяго Калатрава, Кен Янг, Майкл Соркин, Норман Фостер и др.

Ярким использованием природных форм может служить «моллюска наутилуса» (Рис 1), такое название получил уникальный дом, сделанный в виде ракушки (построен по проекту архитектурной студии Arquitectura Organica в Мексике). К примерам архитектурной бионики можно также архитектуру Николала Гримшоу (Рис 2.) Сантьяго Калатравы (Рис 3,4) Нормана Фостера (Рис 5.) и др.

Наиболее сложным этапом освоения в архитектуре природных форм является время от середины XIX и до начала XX в. На нём сказались бурное развитие биологии и большие успехи по сравнению с предыдущим периодом строительной техники (например, изобретение железобетона и начало интенсивного применения стекла и металлических конструкций). Исследуя этот этап, необходимо обратить особое внимание на появление такого значительного по своей силе течения в архитектуре, как "органическая архитектура". Правда, под названием "органическая архитектура" отнюдь не подразумевается прямая и существенная связь архитектуры с живой природой. Направление "органической архитектуры" - направление функционализма. Об этом говорил по телевидению в 1953 г. один из основных её идеологов Фрэнк Ллойд Райт. отвечая на задаваемые ему вопросы: "... органическая архитектура-это архитектура "изнутри наружу", в которой идеалом является целостность. Мы не употребляем слово "органик" в смысле "принадлежащий к растительному идя животному миру".

Подводя итог историческим предпосылкам архитектурной бионики, можно сказать, что архитектурная бионика как теория и практика сложилась в процессе эволюции специфической связана архитектуры и живой природы и что это явление не случайное, а исторически закономерное.

Специфическая черта современного этапа освоения форм живой природы в архитектуре заключается в том, что сейчас осваиваются не просто формальные стороны живой природы, а устанавливаются глубокие связи между законами развития живой природы и архитектуры. На современном этапе архитекторами используются не внешние формы живой природы, а лишь те свойства и характеристики формы, которые являются выражением функций того или иного организма, аналогичные функционально-утилитарным сторонам архитектуры.

От функций к форме и к закономерностям формообразования - таков основной путь архитектурной бионики.

Использование конструктивных систем природы проложило дорогу другим направлениям архитектурной бионики. В первую очередь это касается природных средств "изоляции", которые могут быть применены в организации благоприятного микроклимата для человека в зданиях, а также в городах.

Архитектурная бионика призвана не только решать функциональные вопросы архитектуры, но открывать перспективы в исканиях синтеза функции и эстетической формы архитектуры, учить архитекторов мыслить синтетическими формами и системами.

В последние годы бионика подтверждает, что большинство человеческих изобретений уже "запатентовано" природой. Такое изобретение XX века, как застежки "молния" и "липучки", было сделано на основе строения пера птицы. Бородки пера различных порядков, оснащенные крючками, обеспечивают надежное сцепление. Известные испанские архитекторы М.Р. Сервера и Х. Плоз, активные приверженцы бионики, с 1985 г. начали исследования "динамических структур", а в 1991 г. организовали "Общество поддержки инноваций в архитектуре". Группа под их руководством, в состав которой вошли архитекторы, инженеры, дизайнеры, биологи и психологи, разработала проект "Вертикальный бионический город-башня" (Рис 6.). Через 15 лет в Шанхае должен появиться город-башня (по прогнозам ученых, через 20 лет численность Шанхая может достигнуть 30 млн человек). Город-башня рассчитан на 100 тысяч человек, в основу проекта положен "принцип конструкции дерева".

Башня-город будет иметь форму кипариса высотой 1228 м с обхватом у основания 133 на 100 м, а в самой широкой точке 166 на 133 м. В башне будет 300 этажей, и расположены они будут в 12 вертикальных кварталах по 80 этажей (12 x 80 = 960; 960! =300). Между кварталами - перекрытия-стяжки, которые играют роль несущей конструкции для каждого уровня-квартала. Внутри кварталов - разновысокие дома с вертикальными садами. Эта тщательно продуманная конструкция аналогична строению ветвей и всей кроны кипариса. Стоять башня будет на свайном фундаменте по принципу гармошки, который не заглубляется, а развивается во все стороны по мере набора высоты - аналогично тому, как развивается корневая система дерева. Ветровые колебания верхних этажей сведены к минимуму: воздух легко проходит сквозь конструкцию башни. Для облицовки башни будет использован специальный пластичный материал, имитирующий пористую поверхность кожи. Если строительство пройдет успешно, планируется построить ещё несколько таких зданий-городов. Завершение строительства планируется к 2014 году.

© 2024 pechivrn.ru -- Строительный портал - Pechivrn