Булатов А И:Техника и технология бурения нефтяных и газовых скважин. Реферат: Общее представление о бурение нефтяных и газовых скважин Технология бурения нефтяных

Главная / Устройства

Владимир Хомутко

Время на чтение: 3 минуты

А А

Методы бурения нефтяных и газовых скважин

Скважина представляет собой вертикальную или наклонную горную выработку круглого сечения, сооружение которой происходит без доступа внутрь выработки человека. Длина такой выработки в разы больше её диаметра.

Как бурят нефтяные скважины

Основными элементами любой скважины являются:

  • устье (самая верхняя часть);
  • ствол (промежуточная часть);
  • забой (самая нижняя часть, находящаяся в продуктивном пласте).

Расстояние между устьем и забоем по оси ствола выработки называется длиной скважины, а это же расстояние, но взятое по вертикальной проекции оси называется её глубиной.

Буровая вышка

Иными словами, длина и глубина вертикальной скважины совпадают, а наклонной – нет.

Бурение нефтяных и газовых скважин, как правило. происходит с постепенным уменьшением диаметра ствола после того, как пробурили определенный участок. Начальный диаметр такой выработки, как правило, не более 900 миллиметров, а диаметр в области забоя – от 75 миллиметров и более.

Процесс углубления такой горной выработки представляет собой разрушение пород либо по всей площади забоя (так называемое сплошное бурение), либо по его периферии (колонковое). Во втором случае в стволе выработки остается кусочек породы цилиндрической формы, называемый керном. Керны периодически извлекают из скважины для изучения состава пройденных породы. Специальность человека, который занимается бурением, называется бурильщик.

Многих из вас интересует вопрос: «Как бурят скважины?»

Способы углубления горных выработок по критерию характера воздействия на проходимые породы делятся на:

  • механические;
  • термические;
  • физико-химические;
  • электрические и так далее.

При промышленном освоении месторождений применяются только механические способы. Все прочие перечисленные методики находятся на стадии экспериментальной проверки эффективности.

Механические методы бывают вращательными и ударными.

Ударный способ подразумевает механическое разрушение породы с помощью подвешенного на канате специального инструмента, который называется долото. Помимо этого, в состав такого бурильного устройства входят канатный замок и ударная штанга. Устройство подвешивают на перекинутом через блок, который ставится на мачте, канате, а возвратно-поступательное движение этому инструменту придает специальный буровой станок.

По мере увеличения глубины ствола канат постепенно удлиняют. Цилиндрическая форма ствола формируется путем поворота долота в процессе работы.

Чтобы очищать забой от пробуренной породы, инструмент необходимо периодически поднимать на поверхность. Вместо него опускается специальное приспособление, называемое желонкой. Она похожа на длинное ведро, на дне оборудованное клапаном.

Желонка погружается в жидкость (либо пластовую, либо подаваемую с поверхности) и клапан открывается. В «ведро» поступает смесь жидкости и кусочков разрушенной породы, после чего все это удаляется на поверхность (стоит желонку приподнять, как клапан тут же закрывается). После окончания очистки забоя в ствол снова опускают буровой инструмент, и процесс повторяется снова и снова.

Чтобы стенки выработки не обвалились, в нее опускают специальную трубу, называемую обсадной. Из таких труб по мере углубления горной выработки формируют целую трубную колонну.

Долото для бурение скважин

В России на сегодняшний момент ударный способ на практике не используется.

Вращательный метод подразумевает углубление инструмента в толщу пород за счет одновременного воздействия на долото крутящего момента и вертикальной нагрузки. Вертикальная нагрузка погружает долото в разбуриваемую породу, а крутящий момент позволяет инструменту скалывать, истирать и дробить горную породу.

В зависимости от того, где расположен двигатель установки, вращательное бурение делится на роторное (двигатель находится на поверхности и вращает долото посредством трубной колонны, составляемой из специальных бурильных труб) и забойное (двигатель располагается в забое и ставится непосредственно над долотом).

При роторном способе двигатель вращает ротор, который, в свою очередь, вращает бурильную колонну, на конце которой крепится долото. При забойном способе двигатель вращает само долото, а колонна бурильных труб и корпус самого двигателя остаются неподвижными.

Для вращательного метода бурения характерной особенностью является использование постоянной промывки ствола либо водой, либо специально приготовленными буровыми растворами жидкостью. С этой целью применяются специальные буровые насосы, работу которых обеспечивают двигатели разного типа. Именно эти насосные установки нагнетают промывочный жидкости через трубопровод стояк, который монтируется, как правило, в правом углу буровой вышки. Далее, посредством гибкого бурового шланга и вертлюга жидкость подается непосредственно в саму бурильную колонну.

Доходя до уровня долота, эта промывочная жидкость через отверстия, которые есть в этом инструменте, попадает в породу, а затем по кольцевому свободному пространству, которое остается между стенкой ствола скважины и колонной бурильных труб. поднимается наверх, вымывая куски разбуренной породы. Далее при помощи системы желобов и специальных очистительных устройств эта жидкость очищается от выбуренной породы, после чего попадает в ёмкость, расположенную на буровом насосе. После этого её можно использовать повторно.

Первоначально в нашей стране использовали бурение для строительства соляных скважин. Информация о бурении скважин для поисков нефти относится к 30-м годам XIX века на Тамани. По предложению горного инженера Н.И. Воскобойникова в 1848 году на Биби-Эйбате была пробурена скважина с помощью бура, из которой получена нефть. Это была первая нефтяная скважина в мире, построенная с помощью бурения с использованием способа непрерывной очистки скважины от пробуренной породы промывкой жидкостью.

Скважины бурятся вертикальные, наклонные, горизонтальные. Широкое применение получил метод наклонно-направленного кустового бурения, когда с одной площадки бурится наклонным способом 15 и более скважин. Этот метод успешно применяется в условиях заболоченных мест, при бурении скважин с морских буровых платформ, для сохранения плодородных пахотных земель и т.д.

Понятие о скважине

Скважина - это горная выработка (вертикальная или наклонная) круглого сечения, глубиной от нескольких метров до нескольких километров, различного диаметра, сооружаемая в толще земной коры. Верхняя часть скважины называется устьем, нижняя часть скважины называется забоем, а боковая поверхность называется стволом скважины. Расстояние от устья скважины до забоя по оси ствола скважины называется длиной скважины. Проекция длины на вертикальную ось называется глубиной скважины.

Скважины бывают нефтяные, газовые, газоконденсатные, нагнетательные, наблюдательные, оценочные и т.д. Конструкция скважин должна отвечать следующим требованиям:

  • 1. Обеспечивать механическую устойчивость стенок ствола скважины и надежное разобщение всех (нефть, газ, вода) пластов друг от друга, свободный доступ к забою скважин спускаемого оборудования, недопущение обрушения горных пород в стволе скважины.
  • 2. Эффективную и надежную связь забоя скважины с продуктивным (нефтяным или газовым) пластом.
  • 3. Возможность герметизации устья скважины и обеспечение направления извлекаемой продукции в систему сбора, подготовки и транспорта нефти и газа или нагнетания в пласт агента воздействия.
  • 4. Возможность проведения в скважинах исследовательских работ, а также различных геолого-технических и ремонтно-профилактических работ.

Устойчивость стенок ствола скважин и разобщение пластов друг от друга достигается за счет бурения и спуска в скважину нескольких труб, называемых обсадными. Вначале скважина бурится на глубину 50-100 метров, в нее спускается стальная труба (1 = 500 мм и более - направление. Пространство между наружной стенкой трубы и стенкой скважины (породы) заполняется специальным тампонажным цементным раствором под давлением с целью недопущения обвала верхних пород и перетоков между верхними пластами. Затем скважина бурится меньшим диаметром долота на глубину 500-600 м, в нее спускается труба диаметром 249-273 мм и цементируется, как и направление, до устья. Эта колонна труб называется кондуктором и предназначена для предотвращения размыва верхних пластов, а также для создания канала для бурового глинистого раствора. После этого скважина бурится до проектного забоя. В нее спускается эксплуатационная колонна (стальная труба диаметром 146-168 мм), а пространство между трубой и породой под давлением заполняется цементным раствором до устья. Объем цементного раствораи давление его закачки определяются расчетом. После затвердения цементного раствора (обычно 48 часов) в межтрубном пространстве между наружной стенкой трубы и породой образуется цементный камень, который разобщает пласты между собой.

В зависимости от характеристики залежи, ее пластового давления, геологического разреза и др. конструкция скважин может быть одноколонной или многоколонной (двух или трех). Последняя колонна называется эксплуатационной.

После завершения бурения, спуска эксплуатационной колонны, ее цементации в скважине в интервале нефтяного или газового пласта делаются сквозные отверстия через стальную трубу и цементный камень с помощью специальных перфораторов.

После этого скважина осваивается и вводится в эксплуатацию. Скважина может быть с закрытым или открытым забоем. Открытый забой используется, когда продуктивный пласт сложен из плотных пород - карбонатных, известковых или плотных песчаников. При открытом забое скважина бурится до кровли продуктивного пласта, спускается эксплуатационная колонна и цементируется. Затем долотом меньшего диаметра через эксплуатационную колонну вскрывают (добуривают) продуктивный пласт. При этом не требуется перфорация, т.к. продуктивный пласт не перекрывается металлической трубой.

Если продуктивный пласт состоит из неустойчивых и слабоцементированных песчаников или известняков, то забой скважины оборудуется закрытым. При этом скважина бурится до проектной глубины (несколько ниже на 15-20 м продуктивного пласта создается так называемый «зумф»), в нее спускается эксплуатационная колонна, которая цементируется, а затем делается перфорация продуктивных участков пласта для сообщения пласта с забоем скважины. Если пласт представлен слабоцементированными песчаниками или алевролитами, то продуктивный пласт можно вскрывать при открытом забое с последующим спуском фильтра-хвостовика. Фильтр представляется в виде отверстий в эксплуатационной колонне в интервале продуктивного пласта.

Способы бурения нефтяных и газовых скважин.

Существует несколько способов бурения, но промышленное применение нашло механическое бурение. Механическое бурение подразделяется на ударное и вращательное. При ударном бурении буровой инструмент состоит из долота 1, ударной штанги 2, канатного замка 3. На бурящейся скважине устанавливается мачта 12, которая имеет в верхней части блок 5, оттяжной ролик балансира 6, вспомогательный ролик 8 и барабан бурового станка 11. Канат навивается на барабан 11 бурового станка. Буровой инструмент подвешивается на канате 4, который перекидывается через блок 5 мачты 12. При вращении шестерен 10 шатун 9, совершая возвратно-поступательное движение, приподнимает и опускает балансирную раму 6. При опускании рамы оттяжной ролик 7 натягивает канат и поднимает буровой инструмент над забоем скважины. При подъеме рамы канат опускается, долото падает на забой и разрушает породу. Для очистки забоя от разрушенной породы (шлама) поднимают буровой инструмент из скважины и спускают в нее желонку (удлиненный цилиндр типа ведра с клапаном в дне). Для повышения эффективности ударно-канатного бурения необходимо своевременно очищать забой скважины от выбуренной породы.

Вращательное бурение.

Нефтяные и газовые скважины в настоящее время бурятся методом вращательного бурения. При вращательном бурении разрушение горной породы происходит за счет вращающегося долота. Под весом инструмента долото входит в породу и под влиянием крутящего момента разрушает породу. Крутящий момент передается на долото с помощью ротора, устанавливаемого на устье скважины через колоннубурильных труб. Этот метод бурения называется роторным бурением. Если крутящий момент передается на долото от забойного двигателя (турбобура, электробура), то этот способ называют турбинным бурением.

Турбобур - это гидравлическая турбина, приводимая во вращение с помощью нагнетаемой насосами в скважину промывочной жидкости.

Электробур представляет собой электродвигатель в герметичном исполнении, электрический ток к нему подается по кабелю с поверхности.

Буровая вышка - это металлическое сооружение над скважиной для спуска и подъема бурового инструмента с долотом, забойных двигателей, обсадных труб, размещения бурильных свечей после их подъема из скважины и т.д.

Вышки выпускаются нескольких модификаций. Основные характеристики вышек - это грузоподъемность, высота, емкость «магазинов» (место длясвечей бурильных труб), размеры нижнего и верхнего оснований, вес (масса вышки).

Грузоподъемность вышки - это максимальная, предельно допустимая нагрузка на вышку в процессе бурения скважины. Высота вышки определяет длину свечи, которую можно извлечь из скважины, от величины которой зависит продолжительность спускоподъемных операций.

Для бурения скважин на глубину 400-600 м применяется вышка высотой 16-18 м, на глубину 2000-3000 м - высотой 42 м, а на глубину от 4000 до 6500 м - 53 м. Емкость «магазина» показывает, какая суммарная длина бурильных труб диаметром 114-168 мм может быть размещена в них. Размеры верхнего и нижнего оснований характеризуют условия буровой бригады с учетом размещения бурового оборудования, бурильного инструмента и средств механизации спускоподъемных операций. Размеры верхнего основания вышек составляют 2x2 или 2,6x2,6 м, а нижнего - 8x8 или 10x10 м.

Общая масса буровых вышек составляет десятки тонн.

Цикл строительства скважины.

Перед началом бурения на месте бурения скважины площадку освобождают от посторонних предметов, при наличии леса его вырубают и выкорчевывают. Если бурение будет вестись в заболоченной местности, то предварительно отсыпают дорогу до места буровой, а также отсыпают площадку, ликвидируя заболоченность, под буровой установкой. Делают планировку площадки, подводят линию электропередачи, связь и водовод.

Буровые вышки, если позволяет рельеф местности и расстояние, перевозят без разборки на специальных гусеничных тележках или на санях с полозьями, а также возможен метод пневмопередвижки. После перевозки и установки на месте буровой вышки начинают монтаж остального оборудования, т.е. монтаж поршневых насосов с дизельным приводом или насосов с электроприводом; систему очистки бурового раствора, электрощитовую, устьевое оборудование (ротор, превентор, гидравлический индикатор веса), буровое укрытие для привышечных сооружений и т.д. Если бурение начинается на новой площади, удаленной- от места ведения буровых работ, в этом случае все оборудование, включая буровую вышку, насосный блок, очистные сооружения и т.д., завозят в разобранном виде на буровую площадку и здесь начинают собирать буровую вышку и все остальное оборудование.

После монтажа буровой вышки и всего оборудования начинают проводить подготовительные работы к бурению скважины.

К подготовительным работам относятся:

  • 1. Оснастка талевого блока и кронблока стальным канатом и подвеска подъемного крюка.
  • 2. Установка и опробование средств малой механизации.
  • 3. Сборка и подвеска к крюку вертлюга квадрата (ведущая труба), присоединение гибкого высоконапорного шланга к трубе-стояку и к вертлюгу.
  • 4. Центровка вышки.
  • 5. Установка ротора.
  • 6. Бурение направления скважины.

Скважины бурят вертикальные, наклонно-направленные и горизонтальные. Долгое время основным видом бурения скважин было вертикальное бурение. Последние годы все чаще стал применяться метод наклонно-направленного бурения, т.е. когда, согласно проектам на бурение, скважина бурится по траектории с отклонением от вертикали. Обычно наклонные скважины целесообразно бурить под дно моря, реки, озера, а также под горы, овраги; в болотистой местности, заповедных лесах, под крупные промышленные объекты, города и села. Наклонные скважины также применяют при ликвидации открытых нефтяных и газовых фонтанов, а также в целях сохранения плодородных земель, с целью снижения стоимости бурения скважин за счет сокращения подготовительных работ и коммуникаций (связь, электроэнергия, водоводы и т.д.). Для отклонения профиля скважины от вертикали применяют специальные приспособления. К ним относятся: кривой переводник, кривая бурильная труба, различного вида отклонители и т.д. Все больше и больше в нашей стране в последние годы применяется горизонтальное бурение скважин и бурение боковых горизонтальных стволов скважин в отработанных и нерентабельных скважинах, где имеются невыработанные пропластки с нефтью.

Перфорация скважин. После того как обсадные трубы спущены в скважину и зацементированы, против продуктивной части пласта при помощи перфораторов делают отверстия в эксплуатационной колонне и цементном камне для соединения продуктивной части пласта с забоем скважины. Эта операция называется перфорацией. Применяются различные методы перфорации скважин: пулевая, торпедная, кумулятивная и гидропескоструйная.

Пулевой перфоратор (ПП) представляет собой трубу длиной 1 м и диаметром 100 мм, которая заряжается спрессованным порохом и 10 стальными пулями. На каротажном кабеле пулевой перфоратор спускают в скважину, заполненную глинистым раствором, устанавливают против заданного интервала продуктивного пласта и делают выстрелы. Глубина отверстий в породе не превышает 5-7 см. Многие пули застревают в эксплуатационной колонне, в цементном камне, и только небольшое число их пробивает колонну и цементный камень. Практически в настоящее время не находит применения.

Торпедный перфоратор (ТП). Торпедная перфорация осуществляется аппаратами, спускаемыми на кабеле и стреляющими разрывными снарядами диаметром 22 мм. Аппарат состоит из секций, в каждой из которых имеется по два горизонтальных ствола. Снаряд снабжен детонатором накольного типа. При остановке снаряда происходит взрыв внутреннего заряда и растрескивание окружающей горной породы. Глубина каналов, по данным испытаний, составляет 100-160 мм, диаметр канала 22 мм. На 1 м продуктивной части пласта делается не более четырех отверстий, так как при торпедной перфорации часто происходит разрушение обсадной колонны. Так же, как и пулевая, торпедная перфорация применяется очень ограниченно.

В настоящее время в основном применяют кумулятивную перфорацию (ПК). Кумулятивные перфораторы имеют заряды с конусной выемкой, которые позволяют фокусировать взрывные потоки газов и направлять их с большой скоростью перпендикулярно к стенкам скважины.

В кумулятивный перфоратор вставляют шашку из спрессованного порошкообразного взрывчатого вещества, которая имеет конусную выемку, облицованную металлической плашкой.

Кумулятивная перфорация осуществляется стреляющими перфораторами, не имеющими пуль или снарядов. Прострел колонны, цементного камня и породы достигается за счет сфокусированного взрыва. Такая фокусировка обусловлена конической формой поверхности заряда взрывчатого вещества (ВВ), облицованной тонким металлическим покрытием (листовая медь толщиной 0,6 мм). Энергия взрыва в виде тонкого пучка газов - продуктов облицовки - пробивает канал. Кумулятивнаяструя имеет скорость в головной части до 6-8 км/с и создает давление 3-5 тыс. мПа.

При выстреле кумулятивным зарядом в колонне и цементном камне образуется узкий перфорационный канал глубиной до 350 мм и диаметром в средней части 8-14 мм.

На нефтяных промыслах применяют также гидропескоструйный перфоратор (ГПП).

Гидропескоструйный перфоратор состоит из толстостенного корпуса, в который ввинчивается до десяти насадок из абразивно-стойкого материала (керамики, твердых сплавов) диаметрами отверстий 3-6 мм.

Гидропескоструйный перфоратор спускают в скважину на насосно-компрессорных трубах. Перед проведением перфорации скважины с поверхности в НКТ бросают шар, который перекрывает сквозное отверстие перфоратора. После этого с помощью насосных агрегатов АН-500 или АН-700 через НКТ в скважину закачивают жидкость с песком. Нагнетаемая жидкость с песком выходит только через насадки. При выходе из насадок развиваются огромные скорости абразивной струи. В результате за короткое время пробиваются отверстия в обсадных трубах, цементном камне и породе, ствол скважины соединяется с продуктивным пластом. В зависимости от диаметра насадок, их числа и скорости закачки жидкости глубина перфорационных отверстий достигает 40-60 см. При этом сохраняется герметичность цементного камня за колонной. При гидропескоструйной перфорации на устье скважины создается давление до 40 мПа. Темп прокачки жидкости с песком составляет 3-4 л/с на одну насадку. При этом объемная скорость струи в насадке достигает 200-300 м3/сут, а перепад давления 18-22 мПа. Продолжительность перфорации одного интервала - 15-20 минут. По окончании перфорации заданного интервала перфоратор поднимают и устанавливают на следующий интервал, и операция повторяется.

вызов притока в скважину.

В промысловой практике применяют следующие способы вызова притока жидкости из продуктивного пласта к забою скважины: тартание, поршневание, замена жидкости в скважине на более легкую, компрессорный метод, прокачка газожидкостной смеси, откачка глубинными насосами. Перед освоением скважины на устье устанавливается арматура. В любом случае на фланце обсадной колонны должна устанавливаться задвижка высокого давления для перекрытия ствола скважины в аварийных ситуациях.

Поршневание . При поршневании (свабировании) поршень, или сваб, спускается в НКТ на стальном канате. Поршень (сваб) представляет собой трубу диаметром 25-37,5 мм с клапаном, в нижней части открывающимся вверх. На наружной поверхности трубы (в стыках) устанавливаются резиновые манжеты (3-4 шт.), армированные проволочной сеткой. При спуске сваба под уровень жидкость в скважине перетекает через клапан в пространство над поршнем. При подъеме сваба клапан закрывается, а манжеты, распираемые давлением столба жидкости над ними, прижимаются к стенкам НКТ и уплотняются. За один подъем поршень выносит столб жидкости, равный глубине погружения его под уровень жидкости. Глубина погружения ограничивается прочностью тартального каната и обычно составляет 100-150 м.

Тартание - это извлечение жидкости из скважины желонкой, спускаемой на стальном (16 мм) канате с помощью лебедки на тракторе (автомобиле). Изготавливается желонка из трубы длиной 7,5-8 м, имеющей в нижней части клапан со штоком, открывающимся при упоре на шток. В верхней части желонки имеется скоба для крепления каната. Диаметр желонки не должен превышать 0,7 диаметра обсадной колонны. За один спуск желонка выносит из скважины жидкость объемом не более 0,06 м3.

Тартание - трудоемкий и малопроизводительный способ. В то же время тартание дает возможность извлекать глинистый раствор с забоя и контролировать уровень жидкости в скважине. Многократные спуск и подъем поршня приводят к постепенному понижению уровня жидкости в скважине. Большим недостатком этого метода является то, что приходится работать при открытом устье, что связано с опасностью выброса жидкости и открытого фонтанирования. Поэтому поршневание применяется в основном при освоении нагнетательных скважин.

Замена жидкости в скважине. Скважина, законченная бурением, обычно заполнена глинистым раствором. Если заменить глинистый раствор в скважине водой или дегазированной нефтью, то уменьшим забойное давление. Этим способом осваиваются скважины с большим пластовым давлением и хорошими коллекторскими свойствами.

Компрессорный способ освоения. Компрессорный способ имеет более широкое применение при освоении скважин. В скважину перед освоением спускаются насосно-компрессорные трубы, а устье оборудуется фонтанной арматурой. К межтрубному пространству через нагнетательный трубопровод подсоединяют передвижной компрессор или газовую линию с высоким давлением от газокомпрессорной станции. При нагнетании газа в скважину жидкость в межтрубном пространстве оттесняется до башмака НКТ или до пускового отверстия (3-4 мм) в НКТ, сделанного заранее на глубине 700-800 м от устья, и прорывается в НКТ. Газ, попадая в НКТ, газирует жидкость в них. В результате давление на забое значительно снижается. Регулируя расход газа, изменяют плотность газожидкостной смеси в трубах, а соответственно, и давление на забое скважины. При забойном давлении ниже пластового начинается приток жидкости и газа в скважину. После получения устойчивого притока скважина переводится на стационарный режим работы. Этот способ позволяет сравнительно быстро получить значительные депрессии на пласт, что особенно важно для эффективной очистки призабойной зоны скважины. В условиях крепких пород (песчаников, известняков) это приводит к интенсивной очистке порового пространства от кальматирующего (закупоривающего) материала, а в условиях рыхлых пород - к разрушению призабойной зоны пласта. Чтобы обеспечить более плавный пуск скважины, проводят закачку аэрированной нефти через межтрубное пространство с использованием компрессора, промывочного агрегата и смесителя. После выброса газожидкостной смеси через выкидную линию в приемную емкость подачу аэрированной нефти постепенно уменьшают до полного ее прекращения.

Освоение скважин сжатым воздухом в основном проводят применением передвижных компрессоров УКП-80 или КС-100. Компрессор УКП-80 развивает давление 8 МПа с подачей воздуха 8 м /мин, а КС-100 развивает давление 10 МПа с подачей воздуха 16 м3/мин. Следует отметить, что при освоении скважин сжатым воздухом возможны взрывы, так как при содержании углеводородного газа в смеси с воздухом от 6 до 15% образуется гремучая смесь.

Освоение скважин закачкой газированной жидкости.

Освоение скважин газированной жидкостью заключается в том, что вместо газа или воздуха в межтрубное пространство закачивается смесь газа с жидкостью (вода или нефть). Плотность такой газожидкостной смеси зависит от соотношения расходов закачиваемых газа и жидкости, что позволяет регулировать параметры процесса освоения. С учетом того, что плотность газожидкостной смеси больше плотности чистого газа, этот метод позволяет осваивать глубокие скважины компрессорами, которые создают меньшее давление.

Освоение нагнетательных скважин. Нагнетательные скважины должны иметь высокую приемистость по всей толщине продуктивного пласта. Этого можно достичь хорошей очисткой призабойной зоны продуктивного пласта от грязи и других кальматирующих материалов. Призабойную зону пласта очищают перед пуском нагнетательной скважины под закачку теми же способами, что и при освоении нефтедобывающих скважин, но дренирование призабойных зон пласта проводят по времени значительно дольше. Длительность промывки достигает одних суток и более и зависит от количества механических примесей, содержащихся в выходящей из скважины воде. Содержание механических примесей в конце промывки не должно превышать 10-20 мг/л.

Максимальная очистка порового пространства призабойной зоны пласта происходит с использованием таких способов дренирования, которые позволяют создавать очень высокие депрессии на пласт, обеспечивающие высокие скорости фильтрации жидкости к забоям скважин в условиях неустановившихся режимов. Чаще всего дренирование пласта проводят методами самоизлива, аэризации жидкости, откачки с применением высокопроизводительных погружных центробежных насосов и др.

При освоении нагнетательных скважин широкое применение получил метод переменных давлений (МПД). При использовании этого метода в призабойную зону пласта через НКТ с использованием насосных агрегатов в течение короткого времени периодически создают высокое давление нагнетания, которое затем резко сбрасывают через межтрубное пространство (проводят «разрядку»). При закачке жидкости с высоким давлением в призабойной зоне пласта раскрываются имеющиеся и образуются новые трещины, а при сбрасывании давления происходит приток жидкости к забою с большой скоростью. Хорошие результаты получают при использовании способа периодического дренирования призабойных зон созданием многократных мгновенных высоких депрессий на забое.

Иногда плохая приемистость нагнетательных скважин происходит или из-за низкой природной проницаемости пород пласта, или большого количества глинистых пропластков, освоить которые проведением дренажа призабойных зон не удается. В таких случаях для увеличения приемистости нагнетательных скважин используют другие методы воздействия, которые позволяют увеличивать диаметры фильтрационных каналов или создавать систему трещин в породах пласта. К таким методам относятся различные кислотные обработки, тепловые методы, гидравлический разрыв пласта, щелевая разгрузка, обработка пласта оксидатом и т.д.

Для большинства людей, иметь свою нефтяную или газовую скважину - значит решить финансовые проблемы на всю оставшуюся жизнь и жить ни о чем не думая.
Но так ли просто пробурить скважину? Как она устроена? Этим вопросом, к сожалению, мало кто задается.

Буровая скважины 39629Г находится совсем недалеко от Альметьевска, в поселке Карабаш. После ночного дождя, все вокруг в тумане и перед машиной то и дело пробегали зайцыJ

И вот, наконец, показывалась сама буровая. Там нас уже ждал мастер буровой - главный человек на площадке, он принимает все оперативные решения и несет ответственность за все происходящее при бурении, а также - начальник управления буровых работ.

Принципиально, бурением называют разрушение горных пород на забое (в нижней точке) и извлечение разрушенной породы на поверхность. Буровая представляет собой комплекс механизмов, таких как буровая вышка, буровые насосы, системы очистки бурового раствора, генераторы, жилые помещения и т.д.

Буровая площадка, на которой расположены все элементы (о них мы поговорим ниже) - это очищенная от плодородного слоя земли и отсыпанная песком зона. После завершения работ этот слой восстанавливают и, таким образом, существенный вред экологии не наносится. Слой песка - обязателен, т.к. глина при первых дождях превратится в непроходимую жижу. Я сам видел, как в такой жиже застревали многотонные Уралы.
Но обо всем по порядку.

На скважине 39629Г установлен станок (собственно вышка) СБУ-3000/170 (стационарная буровая установка, максимальная грузоподъемность 170 тонн). Станок произведен в Китае и выгодно отличается от того, что я видел раньше. В России тоже производятся буровые, но китайские станки дешевле как в закупке, так и в обслуживании.

На этой площадке ведется кустовое бурение, оно характерно для горизонтальных и наклонно-направленных скважин. Такой тип бурения заключается в том, что устья скважин расположены на близком расстоянии друг от друга.
Поэтому буровой станок оборудован системой самоперемещения по рельсам. Система работает по принципу «тяни-толкай» и станок как бы передвигает сам себе с помощью гидроцилиндров. На перемещение с одной точки до другой (первые десятки метров) со всеми сопутствующими операциями уходит пара часов.

Поднимаемся на рабочую площадку буровой. Здесь собственно и происходит большая часть работы буровиков. На фото видны трубы буровой колонны (слева) и гидравлический ключ, при помощи которого колонна наращивается новыми трубами и продолжает бурение. Бурение происходит благодаря долоту на конце колонны и вращению, которое передается с помощью ротора.

Особый восторг у меня вызвало рабочее место бурильщика. Когда-то давно, в Республике Коми, я видел бурильщика, который управлял всеми процессами с помощью трех ржавых рычагов и собственной интуиции. Чтобы сдвинуть рычаг с места, он буквально повисал на нем. В итоге, буровой крюк чуть было не зашиб его.
Здесь же бурильщик подобен капитану космического корабля. Он сидит в изолированной кабине, в окружении мониторов и управляет всем с помощью джойстика.

Само собой, кабина отапливается зимой и охлаждается летом. Кроме того, на крыше,тоже стеклянной, предусмотрена защитная сетка на случай падения чего-нибудь с высоты и дворник для очистки стекла. Последний вызывает у буровиков неподдельный восторг:)

Лезем наверх!

Кроме ротора, буровая оборудована системой верхнего привода (сделана в США). Эта система объединяет в себе крановый блок и ротор. Грубо говоря, это кран с приделанным к нему электродвигателем. Система верхнего привода является более удобной, быстрой и современной, нежели ротор.

Видео как работает система верхнего привода:

С вышки открывается отличный вид на площадку и окрестности:)

Кроме красивых видов, в верхней точке буровой можно обнаружить рабочее место верхового помбура (помощника бурильщика). В его обязанности входят работы по установке труб и общий контроль.

Так как верховой находится на рабочем месте всю 12-часовую смену и в любую погоду и любое время года, для него оборудована отапливаемая комната. На старых вышках этого никогда не было!

В случае нештатной ситуации, верховой может эвакуироваться с помощью троллея:

Когда скважина пробурена, ствол несколько раз промывается от разбуренной породы (шлама) и в нее спускают обсадную колонну, которая состоит из множества труб, скрученных между собой. Один из типовых внутренних диаметров обсадной колонны — 146 миллиметров. Длина скважины может достигать 2—3 километров и более. Таким образом, длина скважины превосходит её диаметр в десятки тысяч раз. Примерно такими же пропорциями обладает, например, отрезок обычной нити длиной 2—3 метра.

Трубы подаются по специальному желобу:

После спуска обсадной колонны скважину еще раз промывают и начинается цементирование затрубного пространства (пространства между стенкой скважины и обсадной колонной). Цемент подается на забой и продавливается в затрубное пространство.

После того, как цемент застывает, его проверяют зондом (прибором, спускаемым в скважину) АКЦ - акустический контроль цементажа, скважину опрессовывают (проверяют герметичность), если все ОК, то бурение продолжается - разбуривается цементный стакан на забое и долото идет дальше.

Буква «г» в номере скважины 39629Г означает, что ствол скважины - горизонтальный. От устья до определенного момента скважина бурится без отклонения, но потом с помощью шарнирного отклонителя и/или роторного отклонителя она выходит на горизонталь. Первый представляет собой трубу с шарниром, а второй - долото с направленным соплом, которое отклоняется напором бурового раствора. Обычно, на картинках, отклонение ствола изображается чуть ли не под углом 90 градусов, но в реальности этот угол составляет около 5-10 градусов на 100 метров.

За тем, чтобы ствол скважины шел туда, куда нужно, следят специальные люди - «кривильщики» или инженеры телеметрии. По показаниям естественной радиактивности горных пород, сопротивлению и другим параметрам, они контролируют и корректируют курс бурения.

Схематично все это выглядит вот так:

Любые манипуляции с чем-либо на дне (забое) скважины превращаются в очень увлекательное занятие. Если в скважину нечаянно уронить инструмент, насос или несколько труб, то вполне можно уроненное никогда не достать, после чего на скважине стоимостью в десятки или сотни миллионов рублей можно ставить крест. Покопавшись в делах и историях ремонта, можно найти настоящие скважины-жемчужины, на забое которых лежит насос, поверх которого лежит ловильный инструмент (для извлечения насоса), поверх которого лежит инструмент для извлечения ловил
ьного инструмента. При мне в скважину роняли, к примеру, кувалду:)

Чтобы нефть вообще могла поступать в скважину, нужно проделать отверстия в обсадной колонне и цементном кольце за ней, так как они, отделяют коллектор от скважины. Эти отверстия делают с помощью кумулятивных зарядов; они по сути такие же, как, например, противотанковые, только без обтекателя, потому что лететь им никуда не надо. Заряды пробивают не только обсадную колонну и цемент, но и сам пласт горной породы на несколько десятков сантиметров вглубь. Весь процесс называется перфорацией.

Для сокращения трения инструмента, выноса разрушенной породы, предотвращения осыпания стенок скважины и компенсации разницы пластового давления и давления на устье (внизу давление в разы больше) скважина заполнена буровым раствором. Его состав и плотность подбираются в зависимости от характера разреза.
Буровой раствор прокачивается компрессорной станцией и должен постоянно циркулировать в скважине во избежания осыпания стенок скважины, прихвата инструмента (ситуации, когда колонна заблокирована и ее невозможно ни вращать, ни вытащить - это одна из самых распространенных аварий при бурении) и прочего.

Спускаемся с вышки, идем смотреть насосы.

В процессе бурения буровой раствор выносит шлам (разбуренную породу) на поверхность. Анализируя шлам, буровики и геологи могу делать выводы о породах, которые сейчас проходит скважина. Затем раствор нужно очистить от шлама и снова отправить в скважину работать. Для этого оборудована система очистных установок и «амбар», где очищенный хранится шлам (амбар виден на предыдущем фото справа).

Первыми принимают раствор вибросита - они отделяют самые крупные фракции.

Затем раствор проходит ило- (слева) и пескоотделители (справа):

И, наконец, самая мелкая фракция удаляется с помощью центрифуги:

Затем раствор попадает в емкостные блоки, при необходимости восстанавливаются его свойства (плотность, состав и прочее) и оттуда с помощью насоса подается обратно в скважину.
Емкостной блок:

Буровой насос (произведен в РФ!). Красная штука сверху - гидрокомпенсатор, он сглаживает пульсацию раствора за счет противодавления. Обычно на буровых - два насоса: один рабочий, второй резервный на случай поломки.

Все этим насосным хозяйством заведует один человек. Из-за шума оборудования, всю смену он работает в берушах или защитных наушниках.

«А что у буровиков с бытом?» - спросите вы. Этот момент мы тоже не упустили из внимания!
На этой площадке буровики работают, короткими вахтами по 4 дня, т.к. бурение идет практически в черте города, но жилые модули практически ничем не отличаются от тех, что используют, к примеру, в Заполярье (разве что, в лучшую сторону).

Всего на площадке 15 вагончиков.
Часть из них - жилые, в них буровики живут по 4 человека. Вагончики разделены на тамбур с вешалкой, умывальником и шкафов и непосредственно жилую часть.

Кроме того, в отдельные вагончики (на местном сленге - «балки"») выведены баня и кухня-столовая. В последней мы прекрасно позавтракали и обсудили детали работы. Пересказывать не буду, а то вы меня обвините в совсем уж откровенной рекламе, но скажу, что мне немедленно захотелось остаться в Альметьевске… Обратите внимание на цены!

На буровой мы провели около 2,5 часов и я в очередной раз убедился, что таким сложным и опасным делом, как бурение и нефтедобыча в целом могут заниматься только хорошие люди. Еще мне объясняли, что плохие люди тут не задерживаются.

Друзья, спасибо, что дочитали до конца. Надеюсь, теперь вы представляете себе процесс бурения скважин немного лучше. Если у вас остались вопросы - задавайте их в комментариях. Я сам или с помощью экспертов - обязательно отвечу!

Бурением называется воздействие спецтехники на почвенные слои, в результате чего в земле образуется скважина, через которую будут добывать ценные ресурсы. Процесс бурения нефтяных скважин осуществляется по разным направлениям работы, которые зависят от расположения почвенного или горного пласта: оно может быть горизонтальным, вертикальным либо наклонным.

В результате работы в земле образуется цилиндрическая пустота в виде прямого ствола, или скважина. Ее диаметр может быть различным в зависимости от назначения, но он всегда меньше параметра длины. Начало скважины расположено на поверхности почвы. Стены называются стволом, а дно скважины – забоем.

Ключевые этапы

Если для водных скважин может использоваться среднее и легкое оборудование, то спецтехника для бурения нефтяной скважины может использоваться только тяжелая. Процесс бурения может осуществляться только при помощи специального оборудования.

Сам процесс делится на следующие этапы:

  • Подвоз техники на участок, где будет производиться работа.
  • Собственно бурение шахты. Процесс включает в себя несколько работ, одна из которых – углубление ствола, которое происходит при помощи регулярного промывания и дальнейшего разрушения горной породы.
  • Чтобы ствол скважины не был разрушен и не засорил ее, пласты породы укрепляют. С этой целью в пространство прокладывают специальную колонну из соединенных между собой труб. Место между трубой и породой закрепляют цементным раствором: эта работа носит название тампонирования.
  • Последней работой является освоение. На нем вскрывается последний пласт породы, формируется призабойная зона, а также проводится перфорация шахты и отток жидкости.

Подготовка площадки

Для организации процесса бурения нефтяной скважины потребуется провести также подготовительный этап. В случае, если разработка ведется в области лесного массива, требуется, помимо оформления основной документации, заручиться согласием на работы в лесхозе. Подготовка самого участка включает следующие действия:


  1. Вырубка деревьев на участке.
  2. Разбитие зоны на отдельные части земли.
  3. Составление плана работ.
  4. Создание поселка для размещения рабочей силы.
  5. Подготовка основания для буровой станции.
  6. Проведение разметки на месте работы.
  7. Создание фундаментов для установки цистерн на складе с горючими материалами.
  8. Обустройство складов, завоз и отладка оборудования.

После этого необходимо заняться подготовкой оборудования непосредственно для бурения нефтяных скважин. В этот этап входят следующие процессы:

  • Установка и проверка техники.
  • Проводка линий для энергоснабжения.
  • Монтаж оснований и вспомогательных элементов для вышки.
  • Установка вышки и подъем на нужную высоту.
  • Отладка всего оборудования.

Когда оборудование для бурения нефтяных скважин будет готово к эксплуатации, необходимо получить заключение от специальной комиссии, что техника находится в исправном состоянии и готова к работе, а персонал обладает достаточными знаниями в области правил безопасности на производстве подобного рода. При проверке уточняется, правильную ли конструкцию имеют осветительные приборы (они должны иметь устойчивый к взрывам кожух), установлено ли по глубине шахты освещение с напряжением 12В. Замечания, касающиеся качества работы и безопасности, необходимо принять во внимание заранее.

До начала работ по бурению скважины необходимо установить шурф, завезти трубы для укрепления бурового ствола, долото, малую спецтехнику для вспомогательных работ, обсадные трубы, приборы для измерений в ходе бурения, обеспечить водоснабжение и решить другие вопросы.

Буровая площадка содержит объекты для проживания рабочих, технические помещения, лабораторное строение для анализа проб почвы и получаемых результатов, склады для инвентаря и малого рабочего инструмента, а также средства для медицинской помощи и средства безопасности.

Особенности бурения нефтяной скважины

После установки начинаются процессы по переоснащению талевой системы: в ходе этих работ монтируется оборудование, а также апробируются малые механические средства. Установка мачты открывает процесс забуривания в почву; направление не должно разойтись с осевым центром вышки.

После того, как завершается центровка, проводится создание скважины под направление: под этим процессом понимается установка трубы для усиления ствола и заливка начальной части цементом. После установки направления центровка между самой вышкой и роторными осями регулируется повторно.

Бурение под шурф осуществляется в центре ствола, и в процессе работы делается обсадка при помощи труб. При бурении шурфа используется турбобур, для регулировки скорости вращения необходимо удерживать его посредством каната, который фиксируется на самой вышке, а другой частью удерживается физически.

За пару суток до запуска буровой установки, когда прошел подготовительный этап, собирается конференция с участием членов администрации: технологов, геологов, инженеров, бурильщиков. К вопросам, обсуждаемым на конференции, относятся следующие:

  • Схема залегания пластов на нефтяном месторождении: слой глины, слой песчаника с водоносами, слой нефтяных залежей.
  • Конструктивные особенности скважины.
  • Состав горной породы в точке исследований и разработок.
  • Учет возможных трудностей и осложняющих работу факторов, которые могут появиться при бурении нефтяной скважины в конкретном случае.
  • Рассмотрение и анализ карты нормативов.
  • Рассмотрение вопросов, связанных с безаварийной проводкой.

Документы и оборудование: основные требования

Процесс бурения скважины под нефть может начаться только после оформления ряда документов. К ним относятся следующие:

  • Разрешение о начале эксплуатации буровой площадки.
  • Карта нормативов.
  • Журнал по растворам для бурения.
  • Журнал по обеспечению охраны труда в работе.
  • Учет функционирования дизелей.
  • Вахтовый журнал.

К основному механическому оборудованию и расходным материалам, которые используются в процессе бурения скважины, относятся следующие виды:

  • Оборудование для цементирования, сам цементный раствор.
  • Оборудование для обеспечения безопасности.
  • Каротажные механизмы.
  • Техническая вода.
  • Реагенты для различных целей.
  • Вода для питья.
  • Трубы для обсадки и собственно бурения.
  • Площадка под вертолет.

Типы скважин

В процессе бурения нефтяной скважины в горной породе формируется шахта, которую проверяют на наличие нефти либо газа посредством перфорации ствола, при котором происходит стимуляция притока искомого вещества из продуктивной области. После этого бурильная техника демонтируется, скважина пломбируется с указанием даты начала и окончания бурения, а затем мусор вывозится, а металлические части подвергаются утилизации.

При начале процесса диаметр ствола составляет до 90 см, а к концу редко доходит до 16,5 см. В ходе работы строительство скважины делается в несколько этапов:

  1. Углубление дня скважины, для чего используется буровое оборудование: оно размельчает горную породу.
  2. Удаление обломков из шахты.
  3. Закрепление ствола при помощи труб и цемента.
  4. Работы, в ходе которых исследуется полученный разлом, выявляются продуктивные расположения нефти.
  5. Спуск глубины и ее цементирование.

Скважины могут отличаться по заглубленности и делятся на следующие разновидности:

  • Небольшие (до 1500 метров).
  • Средние (до 4500 метров).
  • Углубленные (до 6000 метров).
  • Сверхуглубленные (более 6000 метров).

Бурение скважины подразумевает измельчение цельного пласта породы долотом. Полученные части удаляют посредством вымывания специальным раствором; глубина шахты делается больше при разрушении всей забойной площади.

Проблемы в ходе бурения нефтяных скважин

В ходе бурения скважин можно столкнуться с рядом технических проблем, которые замедлят или сделают работу практически невозможной. К ним относятся следующие явления:

  • Разрушения ствола, обвалы.
  • Уход в почву жидкости для промывки (удаления частей породы).
  • Аварийные состояния оборудования или шахты.
  • Ошибки в сверлении ствола.

Чаще всего обвалы стенок происходят из-за того, что горная порода обладает нестабильной структурой. Признаком обвала является увеличенное давление, большая вязкость жидкости, которая используется для промывки, а также повышенное число кусков породы, которые выходят на поверхность.

Поглощение жидкости чаще всего случается в случае, если залегающий ниже пласт целиком забирает раствор в себя. Его пористая система или высокая степень впитываемости способствует такому явлению.

В процессе бурения скважины снаряд, который движется по часовой стрелке, доходит до места забоя и поднимается обратно. Проведение скважины доходит до коренных пластов, в которые происходит врезка до 1,5 метра. Чтобы скважина не была размыта, в начало погружается труба, она же служит средством проведения промывочного раствора напрямую в желоб.

Буровой снаряд, а также шпиндель может вращаться с разной скоростью и частотой; этот показатель зависит от того, какие виды горных пород требуется пробить, какой диаметр коронки будет сформирован. Скорость контролируется посредством регулятора, который регулирует уровень нагрузки на коронку, служащую для бурения. В процессе работы создается необходимое давление, которое оказывается на стены забоя и резцы самого снаряда.

Проектирование бурения скважины

Перед началом процесса по созданию нефтяной скважины составляется проект в виде чертежа, в котором обозначаются следующие аспекты:

  • Свойства обнаруженных горных пород (устойчивость к разрушению, твердость, степень содержания воды).
  • Глубина скважины, угол ее наклона.
  • Диаметр шахты в конце: это важно для определения степени влияния на него твердости горных пород.
  • Метод бурения скважины.

Проектирование нефтяной скважины необходимо начинать с определения глубины, конечного диаметра самой шахты, а также уровня бурения и конструктивных особенностей. Геологический анализ позволяет разрешить эти вопросы вне зависимости от типа скважины.


Методы бурения

Процесс создания скважины для добычи нефти может осуществляться несколькими способами:

  • Ударно-канатный метод.
  • Работа с применением роторных механизмов.
  • Бурение скважины с использованием забойного мотора.
  • Бурение турбинного типа.
  • Бурение скважины с использованием винтового мотора.
  • Бурение скважины посредством электрического бура.

Первый способ относится к наиболее известным и проверенным методам, и в этом случае шахту пробивают ударами долота, которые производятся с определенной периодичностью. Удары делаются посредством влияния веса долота и утяжеленной штанги. Поднятие оборудования происходит из-за балансира оборудования для бурения.

Работа с роторным оборудованием основана на вращении механизма при помощи ротора, который ставится на устье скважины через трубы для бурения, которые осуществляют функцию вала. Бурение скважин малого размера производится посредством участия в процессе шпиндельного мотора. Роторный привод соединен с карданом и лебедкой: такое устройство позволяет контролировать скорость, с которой вращаются валы.

Бурение при помощи турбины производится посредством передачи вращающегося момента колонне от мотора. Такой же способ позволяет передавать и энергию гидравлики. При этом методе функционирует только один канал подачи энергии на уровне до забоя.

Турбобур – это особый механизм, который преобразует энергию гидравлики в давлении раствора в механическую энергию, которая и обеспечивает вращение.

Процесс бурения нефтяной скважины состоит из опускания и подъема колонны в шахту, а также удерживание на весу. Колонной называется сборная конструкция из труб, которые соединяются друг с другом посредством специальных замков. Главной задачей является передача различных типов энергии к долоту. Таким образом осуществляется движение, приводящее к углублению и разработке скважины.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУЛИКИ ТАТАРСТАН

Альметьевский государственный нефтяной институт

Кафедра бурения нефтяных и газовых скважин

КОНТРОЛЬНАЯ РАБОТА

по курсу «Бурения нефтяных и газовых скважин»

на тему: «Общее представление о бурение нефтяных и газовых скважин»

Выполнил студент: Петрова И. Ф.

Группа 48-72-14

Преподаватель: Уразбахтин Н.Р.

Альметьевск 2009

Введение

1. История бурения

1.1 Буровые работы в России

2. Классификация скважин

2.1 Классификация скважин по назначению

2.2 Классификация скважин по профилю

2.3 Классификация по эксплутационно – экономическому критерию

4.1 Талевая система

4.2 Буровые лебедки

4.3 Роторы

Заключение

Литература

Введение

Нефть и природный газ являются одними из основных полезных ископаемых, которые использовались человеком еще в глубокой древности. Поэтому целью нашей работы является изучение истории бурения нефтяных и газовых скважин, а также использование инструментов и их классификация при бурение нефтяных и газовых скважин. Так как эта тема является актуальной для нашей Республики. Особенно быстрыми темпами добыча нефти стала расти после того, как для ее извлечения из недр земли стали применяться буровые скважины. Обычно датой рождения в стране нефтяной и газовой промышленности считается получение фонтана нефти из скважины.

Следует, что нефтяная промышленность в разных странах мира существует всего 110 – 140 лет, но за этот отрезок времени добыча нефти и газа увеличилась более чем в 40 тыс.раз. В 1860 г. мировая добыча нефти составляла всего 70 тыс.т, в 1970 г. было извлечено 2280 млн.т., а в 1996 г. уже 3168 млн.т. Быстрый рост добычи связан с условиями залегания и извлечения этого полезного ископаемого. Нефть и газ проурочены к осадочным породам и распространены регионально. Причем в каждом седиментационном бассейне отмечается концентрация основных их запасов в сравнительно ограниченном количестве месторождений. Все это с учетом возрастающего потребления нефти и газа в промышленности и возможностью их быстрого и экономичного извлечения из недр делают эти полезные ископаемые объектом первоочередных поисков.

1. История бурения

На основании археологических находок и исследований установлено, что первобытный человек около 25 тыс. лет назад при изготовлении различных инструментов сверлил в них отверстия для прикрепления рукояток. Рабочим инструментом при этом служил кремневый бур.

В Древнем Египте вращательное бурение (сверление) применялось при строительстве пирамид около 6000 лет назад.

Первые сообщения о китайских скважинах для добычи воды и соляных рассолов содержатся в работах философа Конфуция, написанных около 600 г. до н.э. Скважины сооружались методом ударного бурения и достигали глубины 900 м. Это свидетельствует о том, что до этого техника бурения развивалась в течение, по крайней мере, еще нескольких сот лет. Иногда при бурении китайцы натыкались на нефть и газ. Так в 221...263 гг. н.э. в Сычуане из скважин глубиной около 240 м добывали газ, который использовался для выпаривания соли.

Документальных свидетельств о технике бурения в Китае мало. Однако, судя по древней китайской живописи, барельефам, гобеленам, панно и вышивкам на шелке, эта техника находилась на довольно высокой стадии развития.

Бурение первых скважин в России относится к IX веку и связано с добычей растворов поваренной соли в районе г. Старая Русса. Соляной промысел получил большое развитие в XV..XVII вв., о чем свидетельствуют обнаруженные следы буровых скважин в окрестностях г. Соликамска. Их глубина достигала 100 м при начальном диаметре скважин до 1 м.

Стенки скважин часто обваливались. Поэтому для их крепления использовались или полые стволы деревьев или трубы, сплетенные из ивовой коры. В конце XIX в. стенки скважин стали крепить железными трубами. Их гнули из листового железа и склепывали. При углублении скважины трубы продвигали вслед за буровым инструментом (долотом); для этого их делали меньшего диаметра, чем предшествующие. Позднее эти трубы стали называть обсадными. Конструкция их со временем была усовершенствована: вместо клепанных они стали цельнотянутыми с резьбой на концах.

Первая скважина в США была пробурена для добычи соляного раствора близ г. Чарлстона в Западной Вирджинии в 1806 г. Придальнейших поисках рассолов в 1826 г. близ г. Бернсвилла в шт. Кентукки случайно была найдена нефть.

Первые упоминания о применении бурения для поисков нефти относятся к 30-м годам XIX века. На Тамани, прежде чем рыть нефтяные колодцы, производили предварительную разведку буравом. Очевидец оставил следующее описание: «Когда предполагают выкопать в новом месте колодец, то сначала пробуют буравом землю, вдавливая оный и подливая немного воды, дабы он ходше входил и по вынятию оного, есть ли будет держаться нефть, то на сем месте начинают копать четырехугольную яму».

В декабре 1844 г. член Совета Главного Управления Закавказского края В.Н. Семенов направил своему руководству рапорт, где писал о необходимости... углубления посредством бура некоторых колодцев... и произведения вновь разведки на нефть также посредством бура между балаханскими, байбатскими и кабристанскими колодцами». Как признавал сам В.Н. Семенов, эту идею подсказал ему управляющий бакинских и ширванских нефтяных и соляных промыслов горный инженер Н.И. Воскобойников. В 1846 г. министерство финансов выделило необходимые средства и были начаты буровые работы. О результатах бурения говорится в докладной записке наместника Кавказа графа Воронцова от 14 июля 1848 г.:«... на Биби-Эйбате пробурена скважина, в которой найдена нефть». Это была первая нефтяная скважина в мире!

Незадолго до этого в 1846 г. французский инженер Фовель предложил способ непрерывной очистки скважин - их промывку. Сущность метода заключалась в том, что с поверхности земли по полым трубам в скважину насосами закачивалась вода, выносящая кусочки породы наверх. Этот метод очень быстро получил признание, т.к. не требовал остановки бурения.

Первая нефтяная скважина в США была пробурена в 1859 г. Сделал это в районе г. Тайтесвилл, штат Пенсильвания Э. Дрейк, работавший по заданию фирмы «Сенека ойл компани». После двух месяцев непрерывного труда рабочим Э. Дрейка удалось пробурить скважину глубиной всего 22 м, но она дала-таки нефть. Вплоть до недавнего времени эта скважина считалась первой в мире, но найденные документы о работах под руководством В.Н. Семенова восстановили историческую справедливость.

Многие страны связывают рождение своей нефтяной промышленности с бурением первой скважины, давшей промышленную нефть. Так, в Румынии отсчет ведется с 1857 г., в Канаде - с 1858 г., в Венесуэле - с 1863 г. В России долгое время считалось, что первая нефтяная скважина была пробурена в 1864 г. на Кубани на берегу р. Кудако под руководством полковника А.Н. Новосильцева. Поэтому в 1964 г. у нас в стране торжественно отметили 100-летие отечественной нефтяной промышленности и с тех пор каждый год отмечают «День работника нефтяной и газовой промышленности».

Число пробуренных скважин на нефтяных промыслах в конце XIX века стремительно росло. Так в Баку в 1873 г. их было 17, в 1885 г. - 165, в 1890 г. - 356, в 1895 г. - 604, то к 1901 г. - 1740. Одновременно значительно возросла глубина нефтяных скважин. Если в 1872 г. она составляла 55...65 м, то в 1883 г. - 105...125 м, а к концу XIX в. достигла 425...530 м.

В конце 80-х гг. прошлого века близ г. Новый Орлеан (шт. Луизиана, США) было применено вращательное бурение на нефть с промывкой скважин глинистым раствором. В России вращательное бурение с промывкой впервые применили близ г. Грозного в 1902 г. и нашли нефть на глубине 345 м.

Первоначально вращательное бурение осуществлялось вращением долота вместе со всей колонной бурильных труб непосредственно с поверхности. Однако при большой глубине скважин вес этой колонны весьма велик. Поэтому еще в XIX в. появились первые предложения по созданию забойных двигателей, т.е. двигателей, размещаемых в нижней части бурильных труб непосредственно над долотом. Большинство из них осталось нереализованными.

Впервые в мировой практике советским инженером (впоследствии членом-корреспондентом АН СССР) М.А. Капелюшниковым в 1922 г. был изобретен турбобур, представлявший собой одноступенчатую гидравлическую турбину с планетарным редуктором. Турбина приводилась во вращение промывочной жидкостью. В 1935...1939 гг. конструкция турбобура была усовершенствована группой ученых под руководством П.П. Шумилова. Турбобур, предложенный ими, представляет собой многоступенчатую турбину без редуктора.

В 1899 г. в России был запатентован электробур, представляющий собой электродвигатель, соединенный с долотом и подвешенный на канате. Современная конструкция электробура была разработана в 1938 г. советскими инженерами А.П. Островским и Н.В. Александровым, а уже в 1940 г. электробуром была пробурена первая скважина.

В 1897 г. в Тихом океане в районе о. Сомерленд (шт. Калифорния, США) впервые было осуществлено бурение на море. В нашей стране первая морская скважина была пробурена в 1925 г. в бухте Ильича (близ г. Баку) на искусственно созданном островке. В 1934 г. Н.С. Тимофеевым на о. Артема в Каспийском море было осуществле- но кустовое бурение, при котором несколько скважин (порой более 20) бурятся с общей площадки. Впоследствии этот метод стал широко применяться при бурении в условиях ограниченного пространства (среди болот, с морских буровых платформ и т.д.).

С начала 60-х годов с целью изучения глубинного строения Земли в мире стали применять сверхглубокое бурение.

1.1. Буровые работы в России

Буровые работы в России впервые стали проводить для добычи поваренной соли. Соляные рассолы добывались с помощью так называемых рассолоподъемных труб (буровых скважин), которые зачастую были довольно больших диаметров.
Бурение этих скважин в XIV-XVII веках на Пермских соляных промыслах и на Балахновском Усолье (близ г. Нижнего Новгорода) достигло достаточно большого совершенства. Известен первый рукописный свод правил по технологии бурения скважин для разведки и добычи каменной соли - «Роспись как зачать делать новая труба на новом месте», написанный в XVII веке. Этот труд обобщил многовековую практику бурения скважин в России. В нем подробно описаны буровой инструмент, его установка и приемы бурения; приведены рекомендации по методике взятия проб грунта и рассолов, сведения о способах ликвидации аварий, ведении записей при бурении, об изготовлении буров и других частей бурового инструмента.
О высоком уровне технологической культуры бурения скважин в России свидетельствует и тот факт, что в Росписи содержатся 128 специальных буровых терминов только русского происхождения. Одна из «труб» достигла глубины 88 саженей (-176 м).
На рисунке приведен пример бурения таких скважин на Балахновском Усолье.

Установка для бурения под рассолоподъемную трубу на Балахновском Усолье: 1 - канат; 2 - очап; 3 - коромысло; 4 - соха; 5 - переклад; 9 - лестница; 10,13 - вороты с блоками для спуска труб и буровых операций; 11 - обсадная труба; 12 - матица. Первая из известных на европейском континенте скважина была пробурена в 1126 г. на юге Франции в провинции Артуа (Artesium - латинское название). Отсюда пошло современное общее название самоизливающихся водозаборных скважин - артезианские скважины. Однако подобные скважины и колодцы были известны еще в глубокой древности в Китае и Египте. В России в 30-х годах XIX века для водоснабжения губернских и уездных городов и промышленных предприятий начали также бурить артезианские скважины. Например, в 1876 г. подобная скважина впервые была заложена в Москве на Яузском бульваре. В Париже в 1839 г. подобная скважина была пробурена уже на глубину 548 м и вскрыт водоносный пласт, из которого вода хлынула фонтаном на высоту 33 м.
С 1944 г. началась работа по реконструкции бурового оборудования. Был составлен размерный ряд станков для бурения скважин колонковым способом на глубины 75, 150, 300, 600 и 1200 м. В соответствии с этим рядом разработаны и выпущены в 1946-1947 гг. заводом им. Воровского (г. Свердловск) многоскоростные станки марки ЗИВ-75 и ЗИВ-150, а в Ленинграде заводом им. Фрунзе выпушены станки типа ЗИФ-300, ЗИФ-650 и ЗИФ-1200. Эти станки уже были оснащены двухцилиндровой гидравлической подачей и четырехступенчатыми коробками передач. Наряду со стационарными станками были разработаны и выпущены в серию под руководством М. М. Андреева и В. С. Кузьмина самоходные установки УКБ-100, УРБ-ЗАМ, УРБ-2А и др. Эти станки нашли широкое применение при структурно-картировочном, поисковом и гидрогеологическом бурении. С 1965-1970 гг. началось широкое освоение и внедрение алмазного бурения. Был разработан ряд алмазных коронок, армированных алмазами первого и второго сортов. Достаточно широко в это время проведена и механизация спускоподъемных операций. Например, было разработано и выпущено в свет устройство РТ-1200 для свинчивания и развенчивания бурильных труб.

Значительный вклад в развитие теории и практики колонкового бурения внесли СКБ «Геотехника», ВИТР, Тульский филиал ЦНИГРИ, бывшие Ленинградский горный институт, Днепропетровский горный институт. Московский геологоразведочный институт и Томский политехнический институт. Вращательное роторное бурение на нефть, а затем и на газ впервые было применено в США в 1901 г. в сочетании с непрерывной промывкой, а в России - в 1902 г. Производительность этого вида бурения резко возросла после изобретения в 1903 г. инженером Говардом Юзом шарошечного долота. Технически новая задача герметизации заколонного пространства при вращательном бурении была решена закачкой цементного раствора по методу А. А. Богушевского. Следующим крупным шагом в развитии глубокого бурения было создание гидравлических забойных двигателей - турбобуров. В 1923 г. М. А. Капелюшниковым и другими инженерами были созданы одноступенчатые турбобуры, а в 1933-1940 гг. на ба¬зе разработанной П. П. Шумиловым теории осевых многоступенчатых (100 и более ступеней) турбинных двигателей им совместно с Р. А. Иоаннесяном, Э. И. Тагиевым и М. Т. Гусманом были созданы мощные турбобуры с большими крутящими моментами. В последующем турбобур явился незаменимым двигателем при бурении направлен¬ных (наклонных, горизонтальных, многоствольных и т. д.) скважин. Затем в 1937-1940 гг. Н. В. Александровым, А. А. Островским и другими учеными были разработаны и созданы электробуры диаметрами от 164 до 290 мм с частотой вращения 700-540 мин-1 и мощностью 50-250 кВт.

2. Классификация скважин по назначению.

Цилиндрическая горная выработка, проводимая с поверхности земли вглубь при помощи механизмов и имеющая очень небольшое поперечное сечение по сравнению с глубиной, называется буровой скважиной. Скважины могут быть вертикальными или наклонными, диаметры их колеблются в широких пределах (25-900 мм), глубина - от нескольких метров до нескольких тысяч метров.

Начало скважины у поверхности земли называется устьем, дно - забоем, стенки скважины образуют ее ствол.

Все скважины, бурящиеся с целью региональных исследований, поисков, разведки и разработки нефтяных и газовых месторождений или залежей, делятся на следующие категории: опорные, параметрические, структурные, поисковые, разведочные, эксплуатационные.

1. Опорные скважины бурят для изучения геологического строения и гидрогеологических условий регионов, определения общих закономерностей распространения комплексов отложений, благоприятных для нефтегазонакопления, с целью выбора наиболее перспективных направлений геологоразведочных работ на нефть и газ.

Опорные скважины подразделяются на две группы:

К первой группе относят скважины, закладываемые в районах, не исследованных бурением, с целью всестороннего изучения разреза осадочных пород и установления возраста и вещественного состава фундамента.

Ко второй группе относят скважины, закладываемые в относительно изученных районах для всестороннего изучения нижней части разреза, ранее не вскрытой бурением, или для освещения отдельных принципиальных вопросов с целью уточнения геологического строения и перспектив нефтегазоносности района и повышения эффективности геологоразведочных работ на нефть и газ.

2. Параметрические скважины бурят для изучения глубинного геологического строения и сравнительной оценки перспектив нефтегазоносности возможных зон нефтегазонакопления; выявления наиболее перспективных районов для детальных геологопоисковых работ, а также для получения необходимых сведений о геолого-геофизической характеристике разреза отложений с целью уточнения результатов сейсмических и других геофизических исследований.

3. Структурные скважины бурят для выявления перспективных площадей и их подготовки к поисково-разведочному бурению.

4. Поисковые скважины бурят с целью открытия новых месторождений нефти и газа. К этой категории относят скважины, заложенные на новой площади, а также первые скважины, заложенные на те же горизонты в обособленных тектонических блоках, или скважины, заложенные на новые горизонты в пределах месторождения. Поисковыми их считают до получения первых промышленных притоков нефти или газа.

5. Разведочные скважины бурят на площадях с установленной промышленной нефтегазоносностью с целью подготовки запасов нефти газа.

6. Эксплуатационные скважины бурят для разработки и эксплуатации залежей нефти и газа. В эту категорию входят оценочные, эксплуатационные, нагнетательные и наблюдательные (контрольные, пьезометрические) скважины.

Оценочные скважины бурят на разрабатываемую или подготавливаемую к опытной эксплуатации залежь нефти с целью уточнения параметров и режима работы пласта, выявления и уточнения границ обособленных продуктивных полей, а также оценки выработки отдельных участков залежи.

Нагнетательные скважины используют при воздействии на эксплуатируемый пласт различных агентов (закачка воды, газа или воздуха и др.).

Наблюдательные скважины бурят для наблюдения за изменением давления, положения водо-газонефтяных контактов в процессе эксплуатации пласта.

7. Специальные скважины бурят для сброса промышленных вод, ликвидации открытых фонтанов нефти и газа, подготовки структур для подземных хранилищ газа и закачки в них газа, разведки и добычи технических вод.

2.2 Классификация скважин по профилю.

Из практики бурения известно, что практически невозможно получить идеально вертикальный профиль, т.к. при прохождении пластов с различной твердостью, степенью восстания (наклона) пластов и из-за влияния многих других причин имеет место естественное искривление профиля. Конечно, в настоящее время наработан большой опыт по стабилизации профиля скважины, но при этом удорожается строительство и поэтому не всегда экономически целесообразно проводить стабилизационные мероприятия из-за их значительной трудоемкости. В то же время разработка месторождений, залегающих под населенными пунктами, морями, на болотистых участках и т.д., способствовала активному внедрению наклонно направленных скважин (ННС), профиль которых искусственно искривляется с целью вывода забоя скважины в нужную точку продуктивного пласта. Так, уже в 1958 году в Азербайджане 30% общего объема бурения составляло бурение наклонно направленных скважин. В процессе спуско-подъемных операций (СПО) с бурильными и насосно-компрессорными трубами (НКТ), при СПО со штангами, а также в процессе эксплуатации было замечено существенное отличие нагрузок в точке подвеса штанг и труб на таких скважинах от нагрузок в скважинах с весьма слабой искривленностью, которые принято называть вертикальными. Для отслеживания закономерностей влияния степени и характера искривления на технологию бурения и эксплуатации, на величину нагрузок и износа подземного оборудования необходимо было классифицировать скважины по их профилю. В одной из первых попыток классификации все скважины были разделены на четыре группы, где к первой группе были отнесены все плоско искривленные скважины, а к остальным - пространственно искривленные. Плоско искривленными являются скважины, у которых весь профиль лежит в одной вертикальной плоскости, т.е. имеют постоянный азимут.

Пространственно искривленные скважины характеризуются одновременным изменениям зенитного угла и азимута, т.е. проекция ствола скважины на горизонтальную плоскость представляет собой кривую линию, вплоть до образования петель. Как показал опыт, для решения названных задач требуется более подробная классификация, в первую очередь, для ННС. Поэтому в последующие годы многократно предпринимались попытки уточнить классификацию с учетом специфики бурения и эксплуатации ННС.

В настоящее время благодаря большому опыту бурения наклонно направленных скважин, разработке широчайшего спектра различного типа отклонителей и стабилизаторов, научно обоснованных рекомендаций по компоновке низа бурильной колонны (КНБК) можно получить практически любой наперед заданный профиль. В одной из последних работ дана подробная классификация профилей ННС, используемых для проектирования в различных регионах России, США, Англии. Как обычно, они делятся на плоские и пространственные.

Пространственные профили характеризуются увеличением длины ствола скважины по сравнению с плоскими при одинаковой глубине забоя, значительными силами трения при перемещениях бурильных труб, НКТ и штанг, т.е. имеют существенные недостатки. Тем не менее такие профили вынуждены использовать при проектировании глубоких наклонных скважин в районах со сложным геологическим строением, где проводка наклонных плоских скважин невозможна или экономически нецелесообразна.

Плоские профили состоят из различных комбинаций прямолинейных и искривленных участков, причем последние в проектах и расчетах принимаются дугами окружностей определенных радиусов. Профиль любой плоской наклонно направленной скважины включает верхний вертикальный участок, необходимый для упрощения СПО с глубинным оборудованием, и участок начального искривления.

Согласно принятой в работе методике плоские ННС подразделяются на тангенциальные, S-образные и J-образные, заканчивающиеся соответственно наклонным (тангенциальным) участком, участком малоинтенсивного уменьшения зенитного угла, участком малоинтенсивного увеличения зенитного угла.

Вступление большинства нефтяных месторождений страны в позднюю стадию эксплуатации сопровождается резким падением дебитов, ростом обводненности, прорывами воды к эксплуатационным скважинам, в результате чего в пласте остаются заблокированными линзы нефти. Эксплуатация нефтяных месторождений вертикальными скважинами позволяет извлечь около 50% содержащейся в пласте нефти, а в карбонатных коллекторах коэффициент нефтеотдачи еще ниже. Даже при плотных сетках скважин (0,8...6,0 га/скв.) нефтеотдача в карбонатных коллекторах не превышает 12,5-36%. На месторождениях с высоковязкой нефтью она не достигает и 10%. Картина практически не меняется и при переходе к наклонно направленным скважинам.

Исключительная ценность нефти как углеводородного сырья и энергоносителя на фоне падения объемов добычи и промышленных запасов вынуждает вводить в эксплуатацию месторождения с маломощными продуктивными пластами, высоковязкими нефтями и битумами, ранее считавшиеся не перспективными. В таких условиях для достижения приемлемых текущих дебитов, конечной нефтеотдачи и себестоимости, являющихся важнейшими критериями в нефтедобыче, становится совершенно необходимым переход к горизонтальным скважинам (ГС). Применение ГС позволяет уменьшить количество скважин, весьма существенно улучшить дренирование пластов, включить в эксплуатацию оставшиеся линзы нефти, повысить эффективность обработок призабойной зоны скважины за счет ее расширения.

Профиль горизонтальных скважин состоит из двух сопряженных между собой частей: направляющей и горизонтальной. При проектировании горизонтальных скважин используют только J-образный тип профиля. По величине радиуса кривизны ствола различают три типа профиля горизонтальной скважины: с большим, средним и малым радиусами.

Горизонтальные скважины с большим (более 190 м) радиусом кривизны могут быть реализованы при кустовом способе бурения на суше и море, а также при бурении отдельных скважин с большим отклонением от вертикали при длине горизонтального участка 600-1500 м. При строительстве данных скважин используются стандартные техника и технология наклонно направленного бурения, позволяющие получить максимальную интенсивность искривления 0,7…2,0° на 10 м проходки.

Горизонтальные профили скважин со средним радиусом искривления (60-190 м) применяются как при строительстве новых одиночных скважин, так и для восстановления продуктивности старых эксплуатационных скважин. При этом максимальная интенсивность искривления скважины находится в пределах 3... 10° на 10 м проходки при длине горизонтального участка 450-900 м. Такие скважины наиболее экономичны, т.к. имеют значительно меньшую длину ствола по сравнению со скважинами с большим радиусом, обеспечивают более точное попадание ствола в заданную точку на поверхности продуктивного горизонта. Это особенно важно при разбуривании маломощных нефтяных и газовых пластов.

Горизонтальные скважины с малым радиусом кривизны эффективны при разбуривании месторождений, находящихся на поздней стадии эксплуатации. Профиль скважины с малым радиусом искривления позволяет разместить насосное оборудование в вертикальном участке скважины и обеспечить наиболее точное попадание в заданную точку поверхности продуктивного горизонта. Малыми радиусами кривизны считаются радиусы от 10 до 30 м, при которых интенсивность искривления составляет 1,1-2,5° на 1 м (11-25° на 10 проходки). Длина горизонтального участка составляет в таких скважинах 90-250 м.

В России же преимущественно строят профили с большим и средним радиусами кривизны.

Кроме горизонтальных скважин в последние годы начали применять многозабойные скважины (МЗС), состоящие из вертикального ствола с разветвленной системой горизонтальных, полого-наклонных или волнообразных ответвлений, служащих дополнительными каналами, по которым нефть или битум поступают в основной ствол. Число ответвлений на сегодняшний день выполняется от 2 до 11. Основная задача МЗС - получение максимальных текущих и накопленных отборов нефти. По классификации ВНИИ-нефть МЗС подразделяется на следующие типы:

С горизонтальными и полого-наклонными стволами, пробуренными из основного ствола; многоярусные;

Радиальные, в которых из одного горизонтального ствола бурится система радиальных стволов.

2.3 Классификация скважин по эксплутационно – экономическому критерию.

На промыслах принято распределять скважины на две категории по составу и свойствам их продукции, а также по профилю ствола скважины:

1) нормальные;

2) скважины с осложненными условиями.

К нормальным относят вертикальные скважины с практическим отсутствием влияния газа на работу насоса, с содержанием в откачиваемой жидкости механических примесей (песка, глины, продуктов износа) не более 1,3 г/л и вязкости добываемой жидкости до 30 мПа с. При этом термин «вертикальная скважина» является условным, т.к. практически любая скважина имеет искривления как вертикальной плоскости (зенитные), так и (или) в горизонтальной (по азимуту). В ряде случаев для отнесения скважин к категории «нормальных» кроме указанных предъявляются дополнительные требования: обводненность продукции - не более 50%; минерализация - не более 10 г/л, отсутствие или незначительность отложений солей и парафинов на узлах подземного оборудования.

Если параметры скважины и ее продукции не соответствуют вышеперечисленным критериям, то это скважина с осложненными условиями. При этом в зависимости от наиболее значительно осложняющего эксплуатацию фактора, скважины делятся на «песочные», «газовые», «коррозионные», «солеотлагающие», с жидкостью повышенной вязкости (30...60 мПа с), высоковязкие (более 60 мПас), с неньютоновскими жидкостями, битумные.

Широко используется также классификация скважин по глубине и по подаче.

По глубине (по высоте подъема жидкости) скважины условно делят на мелкие (до 500 м), средние (500-1500 м), глубокие (1500-2500 м) и сверхглубокие (более 2500 м). По подаче - на малодебитные (до 5 м3/сут), среднедебитные (5-100 м3/сут) и высокодебитные (более 100м3/сут).

В зависимости от степени осложняющего влияния того или иного фактора или их сочетания выбирают соответствующий способ и оборудование для эксплуатации. При этом кроме критерия техно- логической пригодности способа эксплуатации учитывается экономическая оправданность.

3. Бурение скважин на нефть и газ.

В Китае свыше 2 тыс. лет назад впервые в мировой практике вручную бурились скважины (диаметром 12-15 см и глубиной до 900 м ) для добычи соляных растворов. Буровой инструмент (долото и бамбуковые штанги) опускался в скважину на канатах толщиной 1-4 см , свитых из индийского тростника. Б. первых скважин в России относится к 9 в. и связано с добычей растворов поваренной соли (Старая Русса). Затем соляные промыслы развиваются в Балахне (12 в.), в Соликамске (16 в.). На русских соляных промыслах издавна применялось ударное штанговое Б. Во избежание ржавления буровые штанги делали деревянными; стенки скважин закрепляли деревянными трубами. В 17 в. в рукописном труде "Роспись, как зачать делать новая труба на новом месте" ("Известия императорского археологического общества", 1868, т. 6, отд. 1, в. 3, с. 238-55) подробно описаны методы этого периода. Первый буровой колодец, закрепленный трубами, был пробурен на воду в 1126 в провинции Артуа (Франция), отсюда глубокие колодцы с напорной водой получили название артезианских.

Развитие методов и техники Б. в России начинается с 19 в. в связи с необходимостью снабжения крупных городов питьевой водой. В 1831 в Одессе было образовано "Общество артезианских фонтанов" и пробурены 4 скважины глубиной от 36 до 189 м . В 1831-32 бурили скважины в Петербурге (на Выборгской стороне), в 1833 в Царском Селе, в Симферополе и Керчи, в 1834 в Тамбове, Казани и Евпатории, в 1836 в Астрахани. В 1844 была заложена первая буровая скважина для артезианской воды в Киеве. В Москве первая артезианская скважина глубиной 458 м пробурена на Яузском бульваре в 1876. Первая буровая скважина в США пробурена для добычи соляного раствора близ Чарлстона в Западной Виргинии (1806).

Поворотным моментом, с которого начинается бурный прогресс в Б., было развитие нефтедобычи. Первая нефтяная скважина была пробурена в США случайно в 1826 близ Бернсвилла в Кентукки при поисках рассолов. Первую скважину на нефть заложил в 1859 американец Дрейк близ г. Тайтесвилла в Пенсильвании. 29 августа 1859 нефть была встречена на глубине 71 фута (около 20 м ), что положило начало нефтяной промышленности США. Первая скважина на нефть в России пробурена в 1864 около Анапы (Северный Кавказ).

Технические усовершенствования Б. в 19 в. открываются предложением немецкого инженера Эйгаузена (1834) применять так называемые ножницы (сдвигавшаяся пара звеньев при штанговом Б.). Идея сбрасывать соединённое со штангами долото привела к изобретению во Франции Киндом (1844) и Фабианом (1849) свободно падающего бурового инструмента ("фрейфала"). Этот способ получил название "немецкий". В 1846 французский инженер Фовель сделал сообщение о новом способе очистки буровых скважин водяной струей, подаваемой насосом с поверхности в полую штангу. Первый успешный опыт Б. с промывкой проведён Фовелем в Перпиньяне (Франция).

В 1859 Г. Д. Романовский впервые механизировал работы, применив паровой двигатель для Б. скважины вблизи Подольска. На нефтяных промыслах Баку первые паровые машины появились в 1873, а через 10 лет почти повсеместно они заменили конную тягу. При Б. скважин на нефть на первом этапе получил развитие ударный способ (Б. штанговое, канатное, быстроударное с промывкой забоя). В конце 80-х гг. в Новом Орлеане в Луизиане (США) внедряется роторное Б. на нефть с применением лопастных долот и промывкой глинистым раствором. В России вращательное роторное Б. с промывкой впервые применили в г. Грозном для Б. скважины на нефть глубиной 345 м (1902). В Сураханах (Баку) на территории завода Кокорева в 1901 заложена скважина для добычи газа. Через год с глубины 207 м был получен газ, использовавшийся для отопления завода. В 1901 на Бакинских нефтепромыслах появились первые электродвигатели, заменившие паровые машины при Б. В 1907 пройдена скважина вращательным Б. сплошным забоем с промывкой глинистым раствором.

Впервые автомат для регулирования подачи инструмента при роторном Б. был предложен в 1924 Хилдом (США). В начале 20 в. в США разработан метод наклонного роторного Б. с долотами малого диаметра для забуривания с последующим расширением скважин.

Ещё в 70-х гг. 19 в. появились предложения по созданию забойных двигателей, то есть размещению двигателя непосредственно над буровым долотом у забоя буримой скважины. Созданием забойного двигателя занимались крупнейшие специалисты во многих странах, проектируя его на принципе получения энергии от гидравлического потока, позднее - на принципе использования электрической энергии. В 1873 американский инженер Х. Г. Кросс запатентовал инструмент с гидравлической одноступенчатой турбиной для Б. скважин. В 1883 Дж. Вестингауз (США) сконструировал турбинный забойный двигатель. Эти изобретения не были реализованы, и проблема считалась неосуществимой. В 1890 бакинский инженер К. Г. Симченко запатентовал ротационный гидравлический забойный двигатель. В начале 20 в. польский инженер Вольский сконструировал быстроударный забойный гидравлический двигатель (так называемый таран Вольского), который получил промышленное применение и явился прототипом современных забойных гидроударников.

Впервые в мировой практике М. А. Капелюшниковым, С. М. Волохом и Н. А. Корневым запатентован (1922) турбобур, примененный двумя годами позже для Б. в Сураханах. Этот турбобур был выполнен на базе одноступенчатой турбины и многоярусного планетарного редуктора. Турбобуры такой конструкции применялись при Б. нефтяных скважин до 1934. В 1935-39 П. П. Шумилов, Р. А. Иоаннесян, Э. И. Тагиев и М. Т. Гусман разработали и запатентовали более совершенную конструкцию многоступенчатого безредукторного турбобура, благодаря которому турбинный способ Б. стал основным в СССР. Совершенствование турбинного Б. осуществляется за счёт создания секционных турбобуров с пониженной частотой вращения и увеличенным вращающим моментом.

В 1899 в России был запатентован электробур на канате. В 30-х гг. в США прошёл промышленные испытания электробур с якорем для восприятия реактивного момента, опускавшийся в скважину на кабеле-канате. В 1936 впервые в СССР Квитнером и Н. В. Александровым разработана конструкция электробура с редуктором, а в 1938 А. П. Островским и Н. В. Александровым создан электробур, долото которого приводится во вращение погружным электродвигателем. В 1940 в Баку электробуром пробурена первая скважина.

В 1951-52 в Башкирии при Б. нефтяной скважины по предложению А. А. Минина, А. А. Погарского и К. А. Чефранова впервые применили электробур знакопеременного вращения для гашения реактивного момента, опускаемый на гибком электрокабеле-канате. В конце 60-х гг. в СССР значительно усовершенствована конструкция электробура (повышена надёжность, улучшен токопровод).

Появление наклонного Б. относится к 1894, когда С. Г. Войслав провёл этим способом скважину на воду близ Брянска. Успешная проходка скважины в Бухте Ильича (Баку) по предложению Р. А. Иоаннесяна, П. П. Шумилова, Э. И. Тагиева, М. Т. Гусмана (1941) турбинным наклонно-направленным бурением положила начало внедрению наклонного турбобурения, ставшего основным методом направленного Б. в СССР и получившего применение за рубежом. Этим методом при пересечённом рельефе местности и на морских месторождениях бурят кусты до 20 скважин с одного основания (см. Кустовое бурение). В 1938-41 в СССР разработаны основы теории непрерывного наклонного регулируемого турбинного Б. при неподвижной колонне бурильных труб. Этот метод стал основным при Б. наклонных скважин в СССР и за рубежом.

В 1941 Н. С. Тимофеев предложил в устойчивых породах применять так называемое многозабойное бурение.

В 1897 в Тихом океане, в районе о. Сомерленд (Калифорния, США), впервые было осуществлено Б. на море. В 1924-25 в СССР вблизи бухты Ильича на искусственно созданном островке вращательным способом была пробурена первая морская скважина, давшая нефть с глубины 461 м . В 1934 Н. С. Тимофеевым осуществлено на острове Артема в Каспийском море кустовое Б., при котором несколько скважин бурятся с общей площадки, а в 1935 там же сооружено первое морское металлическое основание для Б. в море. С 50-х гг. 20 в. применяется Б. для добычи нефти и газа со дна моря. Созданы эстакады, плавающие буровые установки с затапливаемыми понтонами, специальные буровые суда, разработаны методы динамической стабилизации буровых установок при Б. на больших глубинах.

Основной метод бурения на нефть и газ в СССР (1970) - турбобурами (76% метража пробуренных скважин), электробурами пройдено 1,5% метража, остальное роторным бурением. В США преимущественно распространение получило роторное бурение; в конце 60-х гг. при проведении наклонно-направленных скважин начали применяться турбобуры. В странах Западной Европы турбобуры применяются в наклонном Б. и при Б. вертикальных скважин алмазными долотами. В 60-е гг. в СССР заметно возросли скорости и глубина Б. на нефть и газ. Так, например, в Татарии скважины, бурящиеся долотом диаметром 214 мм на глубину 1800 м ,проходятся в среднем за 12-14 дней, рекордный результат в этом районе 8-9 дней. За 1963-69 в СССР средняя глубина эксплуатационных нефтяных и газовых скважин возросла с 1627 до 1710 м . Самые глубокие скважины в мире - 7-8 км - пробурены в 60-е гг. (США). В СССР в районе г. Баку пробурена скважина на глубину 6,7 км и в Прикаспийской низменности (район Аралсор) на глубину 6,8 км . Эти скважины пройдены в целях разведки на нефть и газ (см. Опорное бурение). Работы по сверхглубокому бурению для изучения коры и верхней мантии Земли ведутся по международной программе "Верхняя мантия Земли". В СССР по этой программе намечено пробурить в 5 районах ряд скважин глубиной до 15 км . Первая такая скважина начата бурением на Балтийском щите в 1970. Эта скважина проходится методом турбинного бурения.

Основное направление совершенствования Б. на нефть и газ в СССР - создание конструкций турбобуров, обеспечивающих увеличение проходки скважины на рейс долота (полное время работы долота в скважине до его подъёма на поверхность). В 1970 созданы безредукторные турбобуры, позволяющие осуществить оптимизацию режимов Б. шарошечными долотами в диапазоне наиболее эффективных оборотов (от 150 до 400 в мин ) и использовать долота с перепадом давлений в насадках до 10 Мн /м 2 (100 атм ) вместо 1-1,5 Мн /м 2 (10-15 атм ). Создаются турбобуры с высокой частотой вращения (800-100 об/мин ) для Б. алмазными долотами, обеспечивающими при глубоком Б. многократное увеличение проходки и механической скорости Б. за рейс. Разрабатываются новые конструкции низа бурильной колонны, позволяющие бурить в сложных геологических условиях с минимальным искривлением ствола скважины. Ведутся работы по химической обработке промывочных растворов для облегчения и повышения безопасности процесса Б. Конструируются турбины с наклонной линией давления, которые позволяют получить информацию о режиме работы турбобура на забое скважины и автоматизировать процесс Б

4. Буровые установки и сооружения

Процесс бурения сопровождается спуском и подъемом бурильной колонны в скважину, а также поддержанием ее на весу. Масса инструмента, с которой приходится при этом оперировать, достигает многих сотен килоньютонов. Для того чтобы уменьшить нагрузку на канат и снизить установочную мощность двигателей применяют подъемное оборудование (рис. 2.2), состоящее из вышки, буровой лебедки и талевой (полиспастовой) системы. Талевая система, в свою очередь, состоит из неподвижной части -- кронблока (неподвижные блоки полиспаста), устанавливаемого наверху фонаря вышки, и подвижной части -- талевого блока (подвижного блока полиспаста), талевого каната, крюка и штропов. Подъемное оборудование является неотъемлемой частью всякой буровой установки независимо от способа бурения.

Буровая вышка предназначена для подъема и спуска бурильной колонны и обсадных труб в скважину, удержания бурильной колонны на весу во время бурения, а также для размещения в ней талевой системы, бурильных труб и части оборудования, необходимого для осуществления процесса бурения. Наиболее серьезной опасностью при работе на буровых вышках является частичное или полное их разрушение. Основная причина, приводящая к падению или разрушению вышек - недостаточный надзор за их состоянием в процессе длительной эксплуатации. По этим причинам были введены изменения в правилах безопасности предусматривающие обязательные периодические проверки вышек, в том числе с полной разборкой и ревизией их деталей, а также испытания с нагружением вышек в собранном виде.

Кроме того, вышка должна подвергаться тщательному осмотру и проверке каждый раз до начала буровых работ, перед спуском обсадных колонн, освобождением прихваченной бурильной или обсадной колонны, при авариях и после сильных ветров (15 м/с для открытой местности, 21 м/с для лесной и таежной местности, а также когда вышка сооружена в котловане). Вышки мачтового типа монтируются в горизонтальном положении, а затем поднимаются в вертикальное положение при помощи специальных устройств. Транспортировка вышки осуществляется в собранном виде вместе с платформой верхового рабочего в горизонтальном положении на специальном транспортном устройстве. При этом талевая система не демонтируется вместе с вышкой. При невозможности из-за условий местности транспортирования вышки целиком она разбирается на секции и транспортируется частями универсальным транспортом. В практике бурения кроме вышек мачтового типа продолжают использоваться вышки башенного типа, которые собираются методом сверху-вниз. Перед началом монтажа на вышечном основании монтируют подъемник. После окончания сборки вышки подъемник демонтируют.

Одновременно с монтажом буровой установки и установкой вышки ведут строительство привышечных сооружений. К ним относятся следующие сооружения: 1) Редуктор (агрегатный) сарай, предназначенный для укрытия двигателей и передаточных механизмов лебедки. Его пристраивают к вышке со стороны её задней панели в направлении, противоположном мосткам. Размеры редукторного сарая определяются типом установки. 2)Насосный сарай для размещения буровых насосов и силового оборудования. Его строят либо в виде пристройки сбоку фонаря вышки редукторного сарая, либо отдельно в стороне от вышки. Стены и крышу редукторного и насосного сараев в зависимости от конкретных условий обшивают досками, гофрированным железом, камышитовыми щитами, резинотканями или полиэтиленовой плёнкой. Использование некоторых буровых установок требуется совмещение редукторного и насосного сараев. 3) Приемный мост, предназначенный для укладки бурильных обсадных и других труб и перемещения по нему оборудования инструмента, материалов и запасных частей. Приемные мосты бывают горизонтальные и наклонные. Высота установки приемных мостов регулируется высотой установки рамы буровой вышки. Ширина приемных мостов до 1,5...2 м, длина до 18 м. 4) Система устройств для очистки промывочного раствора выбуренной породы, а также склады для химических реагентов и сыпучих материалов. 5)Ряд вспомогательных сооружений при бурении: на электроприводе -- трансформаторные площадки, на двигателях внутреннего сгорания (ДВС) -- площадки, на которых находятся емкости для горюче-смазочных материалов и т. п.

4.1 Талевая система

В процессе проводки скважины подъемная система выполняет различные операции. В одном случае она служит для проведения СПО с целью замены изношенного долота, спуска, подъема и удержания на весу бурильных колонн при отборе керна, ловильных или других работах в скважине, а также для спуска обсадных труб. В других случаях обеспечивает создание на крюке необходимого усилия для извлечения из скважины прихваченной бурильной колонны или при авариях с ней. Для обеспечения высокой эффективности при этих разнообразных работах подъемная система имеет два вида скоростей подъемного крюка: техническую для СПО и технологические для остальных операций.

В связи с изменением веса бурильной колонны при подъеме для обеспечения минимума затрат времени подъемная система должна обладать способностью изменять скорости подъема в соответствии с нагрузкой. Она также служит для удержания бурильной колонны, спущенной в скважину, в процессе бурения.

Подъемная система установки представляет собой полиспастный механизм, состоящий из кронблока, талевого (подвижного) блока, стального каната, являющегося гибкой связью между буровой лебедкой и механизмом крепления неподвижного конца каната. Кронблок устанавливается на верхней площадке буровой вышки. Подвижный конец А каната крепится к барабану лебедки, а неподвижный конец Б - через приспособление к основанию вышки. К талевому блоку присоединяется крюк, на котором подвешивается на штропах элеватор для труб или вертлюг. В настоящее время талевый блок и подъемный крюк во многих случаях объединяют в один механизм - крюкоблок.

4.2 Буровые лебёдки

Лебедка - основной механизм подъемной системы буровой установки. Она предназначена для проведения следующих операций: спуска и подъема бурильных и обсадных труб; удержания колонны труб на весу в процессе бурения или промывки скважины; при подъема бурильной колонны и труб при наращивании; передачи вращения ротору; свинчивания и развенчивания труб; вспомогательных работ по подталкиванию в буровую инструмента, оборудования, труб и др.; подъема собранной вышки в вертикальное положение.

Буровая лебедка состоит из сварной рамы, на которой установлены подъемный и трансмиссионный валы, коробка перемены передач (КПП), тормозная система, включающая основной (ленточный) и вспомогательный (регулирующий) тормоза, пульт управления. Все механизмы закрыты предохранительными щитами. Подъемный вал лебедки, получая вращение от КПП, преобразовывает вращательное движение силового привода в поступательное движение талевого каната, подвижный конец которого закреплен на барабане подъемного вала. Нагруженный крюк поднимается с затратой мощности, зависящей от веса поднимаемых труб, а спускается под действием собственного веса труб или талевого блока, крюка и элеватора, когда элеватор опускается вниз за очередной свечой.

Лебедки снабжаются устройствами для подвода мощности при подъеме колонны и тормозными устройствами поглощения освобождающейся энергии при ее спуске. Для повышения к. п. д. во время подъема крюка с ненагруженным элеватором или колонной переменного веса лебедки или их приводы выполняют многоскоростными. Переключение с высшей скорости на низшую и обратно осуществляется фрикционными оперативными муфта-ми, обеспечивающими плавное включение и минимальную затрату времени на эти операции. Во время подъема колонн различного веса скорости в коробках передач переключают периодически. Оперативного управления скоростями коробки не требуется.

Мощность, передаваемая на лебедку, характеризует основные эксплуатационно-технические ее свойства и является классификационным параметром.

4.3 Роторы

Роторы предназначены для вращения вертикально подвешенной бурильной колонны или восприятия реактивного крутящего момента при бурении забойными двигателями. Они служат также для поддержания на весу колонн бурильных или обсадных труб, устанавливаемых на его столе, на элеваторе или клиньях. Роторы также используются при отвинчивании и свинчивании труб в процессе СПО, ловильных и аварийных работ. Ротор представляет собой как бы конический зубчатый редуктор, ведомое коническое колесо которого насажено на втулку, соединенную со столом. Вертикальная ось стола расположена по оси скважины.

На показана схема ротора. Стол имеет отверстие диаметром 250-1260 мм в зависимости от типоразмера ротора. В отверстие стола устанавливают вкладыши и зажимы ведущей трубы, через которые передается крутящий момент. Большое коническое колесо передает вращение столу ротора, укрепленному на основной и вспомогательной опорах, смонтированных в корпусе, образующем одновременно масляную ванну для смазки передачи и подшипников.

Сверху стол защищен оградой. Быстроходный ведущий вал расположен горизонтально на подшипниках, воспринимающих радиальные и горизонтальные нагрузки. Вал приводится: во вращение от цепной звездочки или с помощью вилки карданного вала, расположенной на конце вала. Ротор снабжен стопором, при включении которого вращение стола становится не-возможным. Фиксация стола ротора необходима при СПО и бурении забойными двигателями для восприятия реактивного момента.

Заключение

Значение нефтегазовой отрасли в народном хозяйстве страны огромно.

Практически все отрасли промышленности, сельское хозяйство, транспорт,

медицина и просто население страны на современном уровне развития

потребляют нефть, природный газ и нефтепродукты. При этом, потребление их внутри страны из года в год возрастает.

Перспективы развития нефтегазового комплекса связаны с огромными

потенциальными ресурсами нефти и газа, которые залегают в недрах и еще не

разведаны. К ним относятся большие площади перспективных земель, как в

пределах суши, так и на акваториях, где имеются предпосылки для обнаружения значительных скоплений нефти и газа.

Это относится и к районам, где давно проводится добыча УВ, и к тем, где

поисковые работы практически не проводились. Среди первых находятся Урало- Поволжье, Тимано-Печора, Западная Сибирь, Предкавказье, Прикаспий, Восточная Сибирь, Дальний Восток (Сахалин). В указанных районах сосредоточены еще значительные прогнозные ресурсы нефти и газа, которые необходимо разведать и прирастить запасы УВ в стране в ближайшем будущем.

В указанных регионах перспективы поисков новых объектов нефти и газа

могут быть связаны:

С выявлением перспективных горизонтов на большой глубине (более

С поисками и разведкой нефти и газа в карбонатных коллекторах;

С выявлением неструктурных ловушек и поисками залежей УВ на

склонах сводовых поднятий и бортах впадин и др.

Кроме этого, перспективы обнаружения новых нефтегазовых объектов

имеются и в неизученных частях России, где работы вообще не проводились,

либо проводились в небольших объемах и не дали положительного результата.

К ним относятся, например, центральные районы европейской части России.

Здесь имеются впадины земной коры (Московская и Мезенская), выполненные мощной толщей древних отложений. Перспективы нефтегазоносности этих впадин связаны с отложениями венда (протерозой), нижнего и верхнего палеозоя.

Перспективы нефтегазоностности связаны также с неизученными частями

Восточной Сибири и Дальнего Востока, где возможные продуктивные горизонты могут быть в палеозойских и мезозойских отложениях. К ним относятся, например, Тургузская впадина (глубиной 4 км).

Новые открытия могут быть сделаны в арктических акваториях России, на

шельфе Баренцева и Карского морей, которые являются геологическим

продолжением платформенных частей суши Русской и Западно-Сибирских плит, а последние являются наиболее продуктивными частями России.

Список используемой литературы:

1. Зыкин М.Я., Козлов В.А., Плотников А.А. Методика ускоренной разведки газовых месторождений. – М.: Недра, 2006.

2. Мстиславская Л.П. Нефтегазовое производство (Вопросы, проблемы, решения): Учебное пособие. – М.: РГУ нефти и газа, 2005.

3. Нестеров И.И., Потеряева В.В., Салманов Ф.К. Закономерности распределения крупных месторождений нефти и газа в земной коре. – М.: Недра, 2002.

© 2024 pechivrn.ru -- Строительный портал - Pechivrn