Химические свойства углекислого газа уравнения реакций. Диоксид углерода: формула, свойства и области применения. Получение диоксида углерода

Главная / Свет

Углекислый газ (двуокись углерода), называемый также углекислотой, - важнейший компонент в составе газированных напитков. Он обусловливает вкус и биологическую стойкость напитков, сообщает им игристость и освежающие свойства.

Химические свойства. В химическом отношении углекислый газ инертен. Образовавшись с выделением большого количества тепла, он, как продукт полного окисления углерода, весьма стоек. Реакции восстановления двуокиси углерода протекают только при высоких температурах. Так, например, взаимодействуя с калием при 230° С, углекислый газ восстанавливается до щавелевой кислоты:

Вступая в химическое взаимодействие с водой, газ, в количестве не более 1% от содержания его в растворе, образует угольную кислоту, диссоциирующую на ионы Н + , НСО 3 - , СО 2 3- . В водном растворе углекислый газ легко вступает в химические реакции, образуя различные углекислые соли. Поэтому водный раствор углекислого газа обладает большой агрессивностью по отношению к металлам, а также разрушающе действует на бетон.

Физические свойства. Для сатурации напитков используется углекислый газ, приведенный в жидкое состояние сжатием до высокого давления. В зависимости от температуры и давления углекислый газ может находиться также в газообразном и твердом состоянии. Температура и давление, соответствующие данному агрегатному состоянию, приведены на диаграмме фазового равновесия (рис. 13).


При температуре минус 56,6° С и давлении 0,52 Мн/м 2 (5,28 кГ/см 2), соответствующих тройной точке, углекислый газ может одновременно находиться в газообразном, жидком и твердом состоянии. При более высоких температуре и давлении углекислый газ находится в жидком и газообразном состоянии; при температуре и давлении, которые ниже этих показателей, газ, непосредственно минуя жидкую фазу, переходит в газообразное состояние (сублимирует). При температуре, превышающей критическую температуру 31,5° С, никакое давление не может удержать углекислый газ в виде жидкости.

В газообразном состоянии углекислый газ бесцветен, не имеет запаха и обладает слабовыраженным кислым вкусом. При температуре 0° С и атмосферном давлении плотность углекислого газа составляет 1,9769 кг/ж 3 ; он в 1,529 раз тяжелее воздуха. При 0°С и атмосферном давлении 1 кг газа занимает объем 506 л. Связь между объемом, температурой и давлением углекислого газа выражается уравнением:

где V - объем 1 кг газа в м 3 /кг; Т - температура газа в ° К; Р - давление газа в н/м 2 ; R - газовая постоянная; А - дополнительная величина, учитывающая отклонение от уравнения состояния идеального газа;

Ожиженный углекислый газ - бесцветная, прозрачная, легкоподвижная жидкость, напоминающая по внешнему виду спирт или эфир. Плотность жидкости при 0° С равна 0,947. При температуре 20°С ожиженный газ сохраняется под давлением 6,37 Мн/м 2 (65 кГ/см 2) в стальных баллонах. При свободном истечении из баллона жидкость испаряется с поглощением большого количества тепла. При снижении температуры до минус 78,5° С часть жидкости замерзает, превращаясь в так называемый сухой лед. По твердости сухой лед близок к мелу и имеет матово-белый цвет. Сухой лед испаряется медленнее жидкости, при этом он непосредственно переходит в газообразное состояние.

При температуре минус 78,9° С и давлении 1 кГ/см 2 (9,8 Мн/м 2) теплота сублимации сухого льда составляет 136,89 ккал/кг (573,57 кдж/кг).

Энциклопедичный YouTube

  • 1 / 5

    Оксид углерода(IV) не поддерживает горения . В нём горят только некоторые активные металлы: :

    2 M g + C O 2 → 2 M g O + C {\displaystyle {\mathsf {2Mg+CO_{2}\rightarrow 2MgO+C}}}

    Взаимодействие с оксидом активного металла:

    C a O + C O 2 → C a C O 3 {\displaystyle {\mathsf {CaO+CO_{2}\rightarrow CaCO_{3}}}}

    При растворении в воде образует угольную кислоту :

    C O 2 + H 2 O ⇄ H 2 C O 3 {\displaystyle {\mathsf {CO_{2}+H_{2}O\rightleftarrows H_{2}CO_{3}}}}

    Реагирует со щёлочами с образованием карбонатов и гидрокарбонатов:

    C a (O H) 2 + C O 2 → C a C O 3 ↓ + H 2 O {\displaystyle {\mathsf {Ca(OH)_{2}+CO_{2}\rightarrow CaCO_{3}\downarrow +H_{2}O}}} (качественная реакция на углекислый газ) K O H + C O 2 → K H C O 3 {\displaystyle {\mathsf {KOH+CO_{2}\rightarrow KHCO_{3}}}}

    Биологические

    Организм человека выделяет приблизительно 1 кг углекислого газа в сутки .

    Этот углекислый газ переносится от тканей, где он образуется в качестве одного из конечных продуктов метаболизма, по венозной системе и затем выделяется с выдыхаемым воздухом через лёгкие. Таким образом, содержание углекислого газа в крови велико в венозной системе, и уменьшается в капиллярной сети лёгких, и мало в артериальной крови. Содержание углекислого газа в пробе крови часто выражают в терминах парциального давления, то есть давления, которое бы имел содержащийся в пробе крови в данном количестве углекислый газ, если бы весь объём пробы крови занимал только он .

    Углекислый газ (CO 2) транспортируется в крови тремя различными способами (точное соотношение каждого из этих трёх способов транспортировки зависит от того, является ли кровь артериальной или венозной).

    Гемоглобин, основной кислород-транспортирующий белок эритроцитов крови, способен транспортировать как кислород, так и углекислый газ . Однако углекислый газ связывается с гемоглобином в ином месте, чем кислород. Он связывается с N-терминальными концами цепей глобина , а не с гемом . Однако благодаря аллостерическим эффектам, которые приводят к изменению конфигурации молекулы гемоглобина при связывании, связывание углекислого газа понижает способность кислорода к связыванию с ним же, при данном парциальном давлении кислорода, и наоборот - связывание кислорода с гемоглобином понижает способность углекислого газа к связыванию с ним же, при данном парциальном давлении углекислого газа. Помимо этого, способность гемоглобина к преимущественному связыванию с кислородом или с углекислым газом зависит также и от pH среды. Эти особенности очень важны для успешного захвата и транспорта кислорода из лёгких в ткани и его успешного высвобождения в тканях, а также для успешного захвата и транспорта углекислого газа из тканей в лёгкие и его высвобождения там.

    Углекислый газ является одним из важнейших медиаторов ауторегуляции кровотока. Он является мощным вазодилататором . Соответственно, если уровень углекислого газа в ткани или в крови повышается (например, вследствие интенсивного метаболизма - вызванного, скажем, физической нагрузкой, воспалением, повреждением тканей, или вследствие затруднения кровотока, ишемии ткани), то капилляры расширяются, что приводит к увеличению кровотока и соответственно к увеличению доставки к тканям кислорода и транспорта из тканей накопившейся углекислоты. Кроме того, углекислый газ в определённых концентрациях (повышенных, но ещё не достигающих токсических значений) оказывает положительное инотропное и хронотропное действие на миокард и повышает его чувствительность к адреналину , что приводит к увеличению силы и частоты сердечных сокращений, величины сердечного выброса и, как следствие, ударного и минутного объёма крови. Это также способствует коррекции тканевой гипоксии и гиперкапнии (повышенного уровня углекислоты).

    Ионы гидрокарбоната очень важны для регуляции pH крови и поддержания нормального кислотно-щелочного равновесия. Частота дыхания влияет на содержание углекислого газа в крови. Слабое или замедленное дыхание вызывает респираторный ацидоз , в то время как учащённое и чрезмерно глубокое дыхание приводит к гипервентиляции и развитию респираторного алкалоза .

    Кроме того, углекислый газ также важен в регуляции дыхания. Хотя наш организм требует кислорода для обеспечения метаболизма, низкое содержание кислорода в крови или в тканях обычно не стимулирует дыхание (вернее, стимулирующее влияние нехватки кислорода на дыхание слишком слабо и «включается» поздно, при очень низких уровнях кислорода в крови, при которых человек нередко уже теряет сознание). В норме дыхание стимулируется повышением уровня углекислого газа в крови. Дыхательный центр гораздо более чувствителен к повышению уровня углекислого газа, чем к нехватке кислорода. Как следствие этого, дыхание сильно разрежённым воздухом (с низким парциальным давлением кислорода) или газовой смесью, вообще не содержащей кислорода (например, 100 % азотом или 100 % закисью азота) может быстро привести к потере сознания без возникновения ощущения нехватки воздуха (поскольку уровень углекислоты в крови не повышается, ибо ничто не препятствует её выдыханию). Это особенно опасно для пилотов военных самолётов, летающих на больших высотах (в случае аварийной разгерметизации кабины пилоты могут быстро потерять сознание). Эта особенность системы регуляции дыхания также является причиной того, почему в самолётах стюардессы инструктируют пассажиров в случае разгерметизации салона самолёта в первую очередь надевать кислородную маску самим, прежде чем пытаться помочь кому-либо ещё - делая это, помогающий рискует быстро потерять сознание сам, причём даже не ощущая до последнего момента какого-либо дискомфорта и потребности в кислороде .

    Дыхательный центр человека пытается поддерживать парциальное давление углекислого газа в артериальной крови не выше 40 мм ртутного столба. При сознательной гипервентиляции содержание углекислого газа в артериальной крови может снизиться до 10-20 мм ртутного столба, при этом содержание кислорода в крови практически не изменится или увеличится незначительно, а потребность сделать очередной вдох уменьшится как следствие уменьшения стимулирующего влияния углекислого газа на активность дыхательного центра. Это является причиной того, почему после некоторого периода сознательной гипервентиляции легче задержать дыхание надолго, чем без предшествующей гипервентиляции. Такая сознательная гипервентиляция с последующей задержкой дыхания может привести к потере сознания до того, как человек ощутит потребность сделать вдох. В безопасной обстановке такая потеря сознания ничем особенным не грозит (потеряв сознание, человек потеряет и контроль над собой, перестанет задерживать дыхание и сделает вдох, дыхание, а вместе с ним и снабжение мозга кислородом восстановится, а затем восстановится и сознание). Однако в других ситуациях, например, перед нырянием, это может быть опасным (потеря сознания и потребность сделать вдох наступят на глубине, и в отсутствие сознательного контроля в дыхательные пути попадёт вода, что может привести к утоплению). Именно поэтому гипервентиляция перед нырянием опасна и не рекомендуется.

    Получение

    В промышленных количествах углекислота выделяется из дымовых газов, или как побочный продукт химических процессов, например, при разложении природных карбонатов (известняк , доломит) или при производстве алкоголя (спиртовое брожение). Смесь полученных газов промывают раствором карбоната калия, которые поглощают углекислый газ, переходя в гидрокарбонат. Раствор гидрокарбоната при нагревании или при пониженном давлении разлагается, высвобождая углекислоту. В современных установках получения углекислого газа вместо гидрокарбоната чаще применяется водный раствор моноэтаноламина , который при определённых условиях способен абсорбировать СО₂, содержащийся в дымовом газе, а при нагреве отдавать его; таким образом отделяется готовый продукт от других веществ.

    Также углекислый газ получают на установках разделения воздуха как побочный продукт получения чистого кислорода, азота и аргона .

    В лабораторных условиях небольшие количества получают взаимодействием карбонатов и гидрокарбонатов с кислотами, например мрамора , мела или соды с соляной кислотой , используя, например, аппарат Киппа . Использование реакции серной кислоты с мелом или мрамором приводит к образованию малорастворимого сульфата кальция, который мешает реакции, и который удаляется значительным избытком кислоты.

    Для приготовления напитков может быть использована реакция пищевой соды с лимонной кислотой или с кислым лимонным соком. Именно в таком виде появились первые газированные напитки. Их изготовлением и продажей занимались аптекари.

    Применение

    В пищевой промышленности углекислота используется как консервант и разрыхлитель , обозначается на упаковке кодом Е290 .

    Устройство для подачи углекислого газа в аквариум может включать в себя резервуар с газом. Простейший и наиболее распространенный метод получения углекислого газа основан на конструкции для изготовления алкогольного напитка браги . При брожении, выделяемый углекислый газ вполне может обеспечить подкормку аквариумных растений

    Углекислый газ используется для газирования лимонада и газированной воды . Углекислый газ используется также в качестве защитной среды при сварке проволокой, но при высоких температурах происходит его распад с выделением кислорода. Выделяющийся кислород окисляет металл . В связи с этим приходится в сварочную проволоку вводить раскислители, такие как марганец и кремний . Другим следствием влияния кислорода, также связанного с окислением, является резкое снижение поверхностного натяжения, что приводит, среди прочего, к более интенсивному разбрызгиванию металла, чем при сварке в инертной среде.

    Хранение углекислоты в стальном баллоне в сжиженном состоянии выгоднее, чем в виде газа. Углекислота имеет сравнительно низкую критическую температуру +31°С. В стандартный 40-литровый баллон заливают около 30 кг сжиженного углекислого газа, и при комнатной температуре в баллоне будет находиться жидкая фаза, а давление составит примерно 6 МПа (60 кгс/см²). Если температура будет выше +31°С, то углекислота перейдёт в сверхкритическое состояние с давлением выше 7,36 МПа. Стандартное рабочее давление для обычного 40-литрового баллона составляет 15 МПа (150 кгс/см²), однако он должен безопасно выдерживать давление в 1,5 раза выше, то есть 22,5 МПа,- таким образом, работа с подобными баллонами может считаться вполне безопасной.

    Твёрдая углекислота - «сухой лёд» - используется в качестве хладагента в лабораторных исследованиях, в розничной торговле, при ремонте оборудования (например: охлаждение одной из сопрягаемых деталей при посадке внатяг) и т. д. Для сжижения углекислого газа и получения сухого льда применяются углекислотные установки .

    Методы регистрации

    Измерение парциального давления углекислого газа требуется в технологических процессах, в медицинских применениях - анализ дыхательных смесей при искусственной вентиляции лёгких и в замкнутых системах жизнеобеспечения. Анализ концентрации CO 2 в атмосфере используется для экологических и научных исследований, для изучения парникового эффекта . Углекислый газ регистрируют с помощью газоанализаторов основанных на принципе инфракрасной спектроскопии и других газоизмерительных систем . Медицинский газоанализатор для регистрации содержания углекислоты в выдыхаемом воздухе называется капнограф . Для измерения низких концентраций CO 2 (а также ) в технологических газах или в атмосферном воздухе можно использовать газохроматографический метод с метанатором и регистрацией на пламенно-ионизационном детекторе .

    Углекислый газ в природе

    Ежегодные колебания концентрации атмосферной углекислоты на планете определяются, главным образом, растительностью средних (40-70°) широт Северного полушария.

    Большое количество углекислоты растворено в океане.

    Углекислый газ составляет значительную часть атмосфер некоторых планет Солнечной системы : Венеры , Марса .

    Токсичность

    Углекислый газ нетоксичен, но по воздействию его повышенных концентраций в воздухе на воздуходышащие живые организмы его относят к удушающим газам (англ.) русск. . Незначительные повышения концентрации до 2-4 % в помещениях приводят к развитию у людей сонливости и слабости. Опасными концентрациями считаются уровни около 7-10 %, при которых развивается удушье, проявляющее себя в головной боли, головокружении, расстройстве слуха и в потере сознания (симптомы, сходные с симптомами высотной болезни), в зависимости от концентрации, в течение времени от нескольких минут до одного часа. При вдыхании воздуха с высокими концентрациями газа смерть наступает очень быстро от удушья .

    Хотя, фактически, даже концентрация 5-7 % CO 2 не смертельна, уже при концентрации 0,1 % (такое содержание углекислого газа наблюдается в воздухе мегаполисов) люди начинают чувствовать слабость, сонливость. Это показывает, что даже при высоких содержаниях кислорода большая концентрация CO 2 сильно влияет на самочувствие.

    Вдыхание воздуха с повышенной концентрацией этого газа не приводит к долговременным расстройствам здоровья и после удаления пострадавшего из загазованной атмосферы быстро наступает полное восстановление здоровья .

    Тема: Простые химические реакции – действие разбавленных кислот на карбонаты, получение и изучение свойств углекислого газа.

    Цели обучения: - Изучить действие кислот на карбонаты и сделать общие выводы.

    Понимать и выполнять качественное испытание углекислого газа.

    Ожидаемые результаты: Посредством химического эксперимента на основании наблюдений, анализа результатов эксперимента учащиеся делают выводы о способах получения углекислого газа, его свойствах, и действии углекислого газа на известковую воду. Путем сравнения способов получения водорода и углекислого газа действием разбавленных кислот на металлы и карбонаты у ченики делают выводы о разных продуктах химических реакциях, полученных действием разбавленных кислот.

    Ход урока:

      Организационный момент: 1) Приветствие. 2) Определение отсутствующих. 3) Проверка готовности учащихся и кабинета к уроку

      Опрос домашнего задания: Презентация видеоролика по теме: « Простые химические реакции, водород». Проведение взаимооценивания домашнего задания, техника «Две звезды и одно пожелание». Цель: Взаимооценивание, повторение изученного материала по теме простые химические реакции; водород способы получения и свойства.

    Деление класса на группы. Стратегия: по счёту.

      Изучение нового материала . Организует работу в группах для изучения теоретического ресурса по теме простые химические реакции – углекислый газ, получение и изучение свойств углекислого газа. Учитель организует взаимоконтроль изученного, ФО техника - составить одно предложение, в котором необходимо выразить ответ на поставленный учителем вопрос.

    - Что нового вы узнали о свойствах кислот?

      Что вы узнали об углекислом газе?

    Цель: о ценить качество каждого ответа быстро и в целом. Отметить идентифицируют ли ученики основные понятия пройденного материала и их взаимосвязи.

      1. Учитель организует повторение правил техники безопасности при работе с кислотами и щелочами (известковой водой) – химический диктант – 4 мин. ФО – техника – самоконтроль по образцу – вставить пропущенные слова, работа с текстом. Цель проверить уровень знаний правил проведения безопасного эксперимента.

    Диктант

    ТЕХНИКА БЕЗОПАСНОСТИ ПРИ РАБОТЕ С КИСЛОТАМИ

    Кислоты вызывают химический ………………….кожи и других тканей.

    По быстроте действия и по скорости разрушения тканей тела кислоты располагаются в следующем порядке, начиная с наиболее сильных: ………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………

    При разбавлении кислот, ……………… льют по ………………… палочке с предохранительным резиновым кольцом внизу.

    Склянку с кислотой нельзя ……………… руками к груди, т.к. возможно ………………… и …………..

    Первая помощь. Пораженный кислотой участок кожи ………. струей холодной ………….. в течение ………………. мин. Пос ле ………………… на обожженное место накладывают пропитанную вод ным раствором …………. марлевую повязку или ват ный тампон. Через 10 мин. повязку ……….., кожу …………., и смазывают глицерином для уменьшения болевых ощу щений.

      1. Выполнение лабораторного опыта: «Получение углекислого газа и изучение его свойств».

    Учащиеся выполняют эксперимент, заполненяют таблицу наблюдений и выводов, производят запись видео наблюдений для размещения в YouTube для того, чтобы их увидели родители.

      Рефлексия занятия: учитель просит выразить отношение к формам проведениям урока, высказать свои пожелания уроку. Учащиеся заполняют цветные стикеры –«Светофор»

    «Красный» – тема мне не ясна, осталось много вопросов.

    «Желтый» – тема мне понятна, но остались вопросы.

    «Зеленый» – тема мне понятна.

      Домашнее задание : Изучить теоретический ресурс. Письменно сравнить результаты действия разбавленных кислот на металлы и карбонаты, сравнить газы водород и углекислый газ – мини – эссе. Оформить видеоролик и разместить его на YouTube . Группам оценить видеоролики других учащихся ФО – техника - «Две звезды и одно пожелание».

    Использованная литература:

      Активные методы преподавания и обучения WWW . CPM . KZ

      Формативное оценивание в начальной школе. Практическое пособие для учителя/ Сост. О. И. Дудкина, А. А. Буркитова, Р. Х. Шакиров. – Б.: «Билим», 2012. – 89 с.

      Оценивание учебных достижений учащихся. Методическое руководство/Сост.Р. Х. Шакиров, А.А. Буркитова, О.И. Дудкина. – Б.: «Билим», 2012. – 80 с.

    Приложение 1

    Теоретический ресурс

    Углекислый газ

    Молекула СО 2

    Физические свойства

    Оксид углерода (IV) – углекислый газ, газ без цвета и запаха, тяжелее воздуха, растворим в воде, при сильном охлаждении кристаллизуется в виде белой снегообразной массы – «сухого льда». При атмосферном давлении он не плавится, а испаряется, минуя жидкое агрегатное состояние – это явление называется сублимация , температура сублимации -78 °С. Углекислый газ образуется при гниении и горении органических веществ. Содержится в воздухе и минеральных источниках, выделяется при дыхании животных и растений. Мало растворим в воде (1 объем углекислого газа в одном объеме воды при 15 °С).

    Получение

    Получают углекислый газ действием сильных кислот на карбонаты:

    metal carbonate + acid → a salt + carbon dioxide + water

    CaCO 3 + 2HCl = CaCl 2 + CO 2 + H 2 O

    карбонат кальция + соляная кислота = углекислый газ + вода

    calcium carbonate + hydrochloric acid calcium chloride + carbon dioxide + water

    Na 2 CO 3 + 2HCl = 2NaCl + CO 2 + H 2 O

    карбонат натрия + соляная кислота = углекислый газ + вода

    sodium carbonate + hydrochloric acid sodium chloride + carbon dioxide + water

    Химические свойства

    Качественна реакция

    Качественной реакцией для обнаружения углекислого газа является помутнение известковой воды:

    Ca(OH) 2 + CO 2 = CaCO 3 + H 2 O.

    известковая вода + углекислый газ = + вода

    В начале реакции образуется белый осадок, который исчезает при длительном пропускании CO 2 через известковую воду, т.к. нерастворимый карбонат кальция переходит в растворимый гидрокарбонат:

    CaCO 3 + H 2 O + CO 2 = С a(HCO 3 ) 2 .

    Приложение 2

    Лабораторный опыт №7

    «Получение углекислого газа и его распознавание»

    Цель работы: экспериментально получить углекислый газ и провести опыт, характеризующий его свойства.

    Оборудование и реактивы: штатив с пробирками, штатив лабораторный, пробирки, газоотводная трубка с резиновой пробкой, прибор для получения углекислого газа, мел (карбонат кальция),карбонат меди ( II ), карбонат натрия, раствор уксусной кислоты, известковая вода.

    Ход работы:

      Подготовьте заранее пробирку с 3 мл известковой воды.

      Соберите прибор для получения газа (как показано на рисунке 1). Поместите в пробирку несколько кусочков мела, налейте до 1/3 объема пробирки уксусной кислоты и закройте пробкой с газоотводной трубкой, конец которой направлен вниз. Сделайте вывод о способе получения углекислого газа (_______________________?) .

      Погрузите газоотводную трубку в пробирку с известковой водой так, чтобы конец газоотводной трубки был ниже уровня раствора. Пропускайте углекислый газ до выпадения осадка. Если продолжать дальше пропускать углекислый газ то осадок исчезнет. Сделайте вывод о химических свойствах углекислого газа.

    По итогам проведенных опытов заполните таблицу, сделайте вывод.

    Образец выполнения работы

      Собрали прибор для получения углекислого газа, поместили в пробирку кусочки мела и прилили соляную кислоту. Наблюдаю: выделение пузырьков газа.

    Углекислый газ можно получить действием уксусной кислоты на:

      мел (карбонат Вывод: Получили углекислый газ и изучили его свойства.

    Качественной реакцией для обнаружения углекислого газа является помутнение известковой воды:

    Ca(OH)2 + CO2 = CaCO3↓ + H2O.

    В начале реакции образуется белый осадок, который исчезает при длительном пропускании CO2 через известковую воду, т.к. нерастворимый карбонат кальция переходит в растворимый гидрокарбонат:

    CaCO3 + H2O + CO2 = Сa(HCO3)2.

    Получение. Получают углекислый газ термическим разложением солей угольной кислоты (карбонатов), например, обжиг известняка:

    CaCO3 = CaO + CO2,

    или действием сильных кислот на карбонаты и гидрокарбонаты:

    CaCO3 + 2HCl = CaCl2 + H2O + CO2,

    NaHCO3 + HCl = NaCl + H2O + CO2.

    Выбросы углекислого газа , серистых соединений в атмосферу в результате промышленной деятельности, функционирования энергетических, металлургических предприятий ведут к возникновению парникового эффекта и связанному с ним потеплению климата.

    По оценкам ученых глобальное потепление без принятия мер по сокращению выбросов парниковых газов составит от 2-х до 5 градусов на протяжении следующего столетия, которое появится беспрецедентным явлением за последние десть тысяч лет. Потепления климата, увеличения уровня океана на 60-80 см до конца следующего столетия приведут к экологической катастрофе невиданного масштаба, который угрожает деградацией человеческому содружеству.

    Угольная кислота и ее соли. Угольная кислота очень слабая, существует только в водных растворах и незначительно диссоциирует на ионы. Поэтому водные растворы СО2 обладают слабокислыми свойствами. Структурная формула угольной кислоты:

    Как двухосновная, она диссоциирует ступенчато: Н2СO3Н++НСО-3 НСО-3Н++СО2-3

    При нагревании она разлагается на оксид углерода (IV) и воду.

    Как двухосновная кислота, она образует два типа солей: средние соли - карбонаты, кислые соли - гидрокарбонаты. Они проявляют общие свойства солей. Карбонаты и гидрокарбонаты щелочных металлов и аммония хорошо растворимы в воде.

    Соли угольной кислоты - соединения устойчивые, хотя сама кислота неустойчива. Они могут быть получены взаимодействием СО2 с растворами оснований или же путем обменных реакций:

    NaOH+СO2=NaHCO3

    КНСO3+КОН=К2СO3+Н2O­

    ВаСl2+Na2CO3=BaCO3+2NaCl

    Карбонаты щелочноземельных металлов в воде малорастворимы. Гидрокарбонаты, напротив, растворимы. Гидрокарбонаты образуются из карбонатов, оксида углерода (IV) и воды:

    СаСO3+СO2+Н2О=Са(НСО3)2

    При нагревании карбонаты щелочных металлов плавятся, не разлагаясь, а остальные карбонаты при нагревании легко разлагаются на оксид соответствующего металла и СО2:

    СаСO3=СаО+CO2

    Гидрокарбонаты при нагревании переходят в карбонаты:

    2NaHCO3=Na2CO3+CO2+Н2О

    Карбонаты щелочных металлов в водных растворах имеют сильнощелочную реакцию вследствие гидролиза:

    Na2CO3+Н2О=NaHCO3+NaOH

    Качественной реакцией на карбонат-ион С2-3 и гидрокарбонат НСО-3 является их взаимодействие с более сильными кислотами. Выделение оксида углерода (IV) с характерным «вскипанием» указывает на наличие этих ионов.

    СаСO3+2НСl=СаСl2+CO2+Н2О

    Пропуская выделяющийся СО2 через известковую воду, можно наблюдать помутнение раствора вследствие образования карбоната кальция:

    Са(ОН)2+СO2=CaCO3+Н2O

    При длительном пропускании СО2 раствор становится снова прозрачным вследствие

    образования гидрокарбоната: СаСО3+Н2O+СO2=Са(НС­O3)2

    Наиболее часто встречающиеся процессы образования этого соединения - гниение животных и растительных останков, горение различных видов топлива, дыхание животных и растений. Например, один человек за сутки выделяет в атмосферу около килограмма углекислого газа. Оксид и диоксид углерода могут образовываться и в неживой природе. Углекислый газ выделяется при вулканической деятельности, а также может быть добыт из минеральных водных источников. Углекислый газ находится в небольшим количестве и в атмосфере Земли.

    Особенности химического строения данного соединения позволяют ему участвовать во множестве химических реакций, основой для которых является диоксид углерода.

    Формула

    В соединении этого вещества четырехвалентный атом углерода образовывает линейную связь с двумя молекулами кислорода. Внешний вид такой молекулы можно представить так:

    Теория гибридизации объясняет строение молекулы диоксида углерода так: две существующие сигма-связи образованы между sp-орбиталями атомов углерода и двумя 2р-орбиталями кислорода; р-орбитали углерода, которые не принимают участие в гибридизации, связаны в соединении с аналогичными орбиталями кислорода. В химических реакциях углекислый газ записывается в виде: CO 2.

    Физические свойства

    При нормальных условиях диоксид углерода представляет собой бесцветный газ, не обладающий запахом. Он тяжелее воздуха, поэтому углекислый газ и может вести себя, как жидкость. Например, его можно переливать из одной емкости в другую. Это вещество немного растворяется в воде - в одном литре воды при 20 ⁰С растворяется около 0,88 л CO 2 . Небольшое понижение температуры кардинально меняет ситуацию - в том же литре воды при 17⁰С может раствориться 1,7 л CO 2 . При сильном охлаждении это вещество осаждается в виде снежных хлопьев - образуется так называемый «сухой лед». Такое название произошло от того, что при нормальном давлении вещество, минуя жидкую фазу, сразу превращается в газ. Жидкий диоксид углерода образуется при давлении чуть выше 0,6 МПа и при комнатной температуре.

    Химические свойства

    При взаимодействии с сильными окислителями 4-диоксид углерода проявляет окислительные свойства. Типичная реакция этого взаимодействия:

    С + СО 2 = 2СО.

    Так, при помощи угля диоксид углерода восстанавливается до своей двухвалентной модификации - угарного газа.

    При нормальных условиях углекислый газ инертен. Но некоторые активные металлы могут в нем гореть, извлекая из соединения кислород и высвобождая газообразный углерод. Типичная реакция - горение магния:

    2Mg + CO 2 = 2MgO + C.

    В процессе реакции образуется оксид магния и свободный углерод.

    В химических соединениях СО 2 часто проявляет свойства типичного кислотного оксида. Например, он реагирует с основаниями и основными оксидами. Результатом реакции становятся соли угольной кислоты.

    Например, реакция соединения оксида натрия с углекислым газом может быть представлена так:

    Na 2 O + CO 2 = Na 2 CO 3 ;

    2NaOH + CO 2 = Na 2 CO 3 + H 2 O;

    NaOH + CO 2 = NaHCO 3 .

    Угольная кислота и раствор СО 2

    Диоксид углерода в воде образует раствор с небольшой степенью диссоциации. Такой раствор углекислого газа называется угольной кислотой. Она бесцветна, слабо выражена и имеет кисловатый вкус.

    Запись химической реакции:

    CO 2 + H 2 O ↔ H 2 CO 3.

    Равновесие довольно сильно сдвинуто влево - лишь около 1% начального углекислого газа превращается в угольную кислоту. Чем выше температура - тем меньше в растворе молекул угольной кислоты. При кипении соединения она исчезает полностью, и раствор распадается на диоксид углерода и воду. Структурная формула угольной кислоты представлена ниже.

    Свойства угольной кислоты

    Угольная кислота очень слабая. В растворах она распадается на ионы водорода Н + и соединения НСО 3 - . В очень небольшом количестве образуются ионы СО 3 - .

    Угольная кислота - двухосновная, поэтому соли, образованные ею, могут быть средними и кислыми. Средние соли в русской химической традиции называются карбонатами, а сильные - гидрокарбонатами.

    Качественная реакция

    Одним из возможных способов обнаружения газообразного диоксида углерода является изменение прозрачности известкового раствора.

    Ca(OH) 2 + CO 2 = CaCO 3 ↓ + H 2 O.

    Этот опыт известен еще из школьного курса химии. В начале реакции образуется небольшое количество белого осадка, который впоследствии исчезает при пропускании через воду углекислого газа. Изменение прозрачности происходит потому, что в процессе взаимодействия нерастворимое соединение - карбонат кальция превращается в растворимое вещество - гидрокарбонат кальция. Реакция протекает по такому пути:

    CaCO 3 + H 2 O + CO 2 = Ca(HCO 3) 2 .

    Получение диоксида углерода

    Если требуется получить небольшое количество СО2, можно запустить реакцию соляной кислоты с карбонатом кальция (мрамором). Химическая запись этого взаимодействия выглядит так:

    CaCO 3 + HCl = CaCl 2 + H 2 O + CO 2 .

    Также для этой цели используют реакции горения углеродсодержащих веществ, например ацетилена:

    СН 4 + 2О 2 → 2H 2 O + CO 2 -.

    Для сбора и хранения полученного газообразного вещества используют аппарат Киппа.

    Для нужд промышленности и сельского хозяйства масштабы получения диоксида углерода должны быть большими. Популярным методом такой масштабной реакции является обжиг известняка, в результате которого получается диоксид углерода. Формула реакции приведена ниже:

    CaCO 3 = CaO + CO 2 .

    Применение диоксида углерода

    Пищевая промышленность после масштабного получения «сухого льда» перешла на принципиально новый метод хранения продуктов. Он незаменим при производстве газированных напитков и минеральной воды. Содержание СО 2 в напитках придает им свежесть и заметно увеличивает срок хранения. А карбидизация минеральных вод позволяет избежать затхлости и неприятного вкуса.

    В кулинарии часто используют метод погашения лимонной кислоты уксусом. Выделяющийся при этом углекислый газ придает пышность и легкость кондитерским изделиям.

    Данное соединение часто используется в качестве пищевой добавки, повышающей срок хранения пищевых продуктах. Согласно международным нормам классификации химических добавок содержания в продуктах, проходит под кодом Е 290,

    Порошкообразный углекислый газ - одно из наиболее популярных веществ, входящих в состав пожаротушительных смесей. Это вещество встречается и в пене огнетушителей.

    Транспортировать и хранить углекислый газ лучше всего в металлических баллонах. При температуре более 31⁰С давление в баллоне может достигнуть критического и жидкий СО 2 перейдет в сверхкритическое состояние с резким подъемом рабочего давления до 7,35 МПа. Металлический баллон выдерживает внутреннее давление до 22 МПа, поэтому диапазон давления при температурах свыше тридцати градусов признается безопасным.

© 2024 pechivrn.ru -- Строительный портал - Pechivrn