Мощные регулируемые стабилизаторы с защитой. Lm317 стабилизатор тока. Стабилизация и защита схемы. Каждый вывод микросхемы имеет свое предназначение. Стабилизатор напряжения с защитой по току схема. Мощные стабилизаторы напряжения с защитой по току. Данны

Главная / Энергосбережение

На рис.1 изображена схема стабилизатора, от которой можно питать не только автомобильный магнитофон, но и любую радиолюбительскую конструкцию с напряжением от 1 до 35 В и которой не страшны большие токи нагрузки, поскольку введена токовая защита.
Регулятор напряжения собран на микросхеме DA1, которая дополнена мощным транзистором, который может отдать в нагрузку ток до 5 А. При сопротивлении резистора R5=0,3 Ом максимальный ток нагрузки составляет 2,8 А.
При дальнейшем повышении тока до 2,9-3 А срабатывает защита, выполненная на оптроне VD6. Когда напряжение на R5 станет большим, загорается светодиод внутри оптрона VD6.
Открывается динисторный тиристор и пропускает отрицательное напряжение на вывод 8 микросхемы DA1, что приводит к падению напряжения на выходе стабилизатора до 1 В. Вернуть напряжение на выходе стабилизатора можно нажатием кнопки SA2. Регулируют напряжение на выходе резистором R4.
Для сглаживания по низким и высоким частотам служат дроссель Др1 и конденсаторы С2, С3. Применение оптрона повышает надежность и быстродействие защиты.

Конструкция и детали

В блоке питания применены следующие детали. Трансформатор Т1 любой с выходным напряжением 35 В и током не менее 3,5 А, конденсатор С1 любой с номинальным напряжением 250 В, вместо С4 можно использовать импортный 1000 мкФ х 50 В. Резисторы R1-R3 типа МЛТ мощностью 0,25 Вт. Микросхема DA1 типа К142ЕН12, полным ее аналогом является микросхема зарубежного производства LM317Т. Транзистор VT1 типа КТ803А, КТ805Г, КТ808, оптрон VD6 типа АОУ103В.

Печатная плата показана на рис.2.

А.С. Ковальчук, Хмельницкая обл.


Литература — Электрик 3/2000

  • Похожие статьи

Войти с помощью:

Случайные статьи

  • 24.09.2014

    Сенсорный выключатель показанный на рисунке имеет двухконтактный сенсорный элемент, при касании обеих контактов напряжение питания (9В) от источника питания подается в нагрузку, а при следующем касании сенсорных контактов питания отключается от нагрузки, нагрузкой может быть лампа или реле. Сенсор очень экономичен и потребляет малый ток в режиме ожидания. В момент …

  • 08.10.2016

    MAX9710/MAX9711 — стерео/моно УМЗЧ с выходной мозностью 3 Вт имеющие режим пониженного потребления. Технические характеристики: Выходная мощность 3 Вт на нагрузке 3 Ом (при КНИ до 1%) Выходная мощность 2,6 Вт на нагрузке 4 Ом (при КНИ до 1%) Выходная мощность 1,4 Вт на нагрузке 8 Ом (при КНИ до 1%) Коэффициент подавления шумов …

Устройств необходим блок питания (БП), в котором имеется регулировка выходного напряжения и возможность регулирования уровня срабатывания защиты от превышения по току в широких пределах. При срабатывании защиты, нагрузка (подключенное устройство) должна автоматически отключаться.

Поиск в интернете дал несколько подходящих схем блоков питания. Остановился на одной из них. Схема проста в изготовлении и наладке, состоит из доступных деталей, выполняет заявленные требования.

Предлагаемый к изготовлению блок питания выполнен на базе операционного усилителя LM358 и имеет следующие характеристики :
Входное напряжение, В - 24...29
Выходное стабилизированное напряжение, В - 1...20 (27)
Ток срабатывания защиты, А - 0,03...2,0

Фото 2. Схема БП

Описание работы БП

Регулируемый стабилизатор напряжения собран на операционном усилителе DA1.1. На вход усилителя (вывод 3) поступает образцовое напряжение с движка переменного резистора R2, за стабильность которого отвечает стабилитрон VD1, а на инвертирующий вход (вывод 2) напряжение поступает с эмиттера транзистора VT1 через делитель напряжения R10R7. С помощью переменного резистора R2, можно изменять выходное напряжение БП.
Блок защиты от перегрузок по току выполнен на операционном усилителе DA1.2, он сравнивает напряжения на входах ОУ. На вход 5 через резистор R14 поступает напряжение с датчика тока нагрузки - резистора R13. На инвертирующий вход (вывод 6) поступает образцовое напряжение, за стабильность которого отвечает диод VD2 с напряжением стабилизации около 0,6 в.

Пока падение напряжения, создаваемое током нагрузки на резисторе R13, меньше образцового, напряжение на выходе (вывод 7) ОУ DA1.2 близко к нулю. В том случае, если ток нагрузки превысит допустимый установленный уровень, увеличится напряжение на датчике тока и напряжение на выходе ОУ DA1.2 возрастет практически до напряжения питания. При этом включится светодиод HL1, сигнализируя о превышении, откроется транзистор VT2, шунтируя стабилитрон VD1 резистором R12. Вследствие чего, транзистор VT1 закроется, выходное напряжение БП уменьшится практически до нуля и нагрузка отключится. Для включения нагрузки нужно нажать на кнопку SА1. Регулировка уровня защиты выполняется с помощью переменного резистора R5.

Изготовление БП

1. Основу блока питания, его выходные характеристики определяет источник тока – применяемый трансформатор. В моем случае нашел применение тороидальный трансформатор от стиральной машины. Трансформатор имеет две выходные обмотки на 8в и 15в. Соединив обе обмотки последовательно и добавив выпрямительный мост на имеющихся под рукой диодах средней мощности КД202М, получил источник постоянного напряжения 23в, 2а для БП.


Фото 3. Трансформатор и выпрямительный мост.

2. Другой определяющей частью БП является корпус прибора. В данном случае нашел применение детский диапроектор мешающийся в гараже . Удалив лишнее и обработав в передней части отверстия для установки показывающего микроамперметра, получилась заготовка корпуса БП.


Фото 4. Заготовка корпуса БП

3. Монтаж электронной схемы выполнен на универсальной монтажной плате размером 45 х 65 мм. Компоновка деталей на плате зависит от размеров, найденных в хозяйстве компонентов. Вместо резисторов R6 (настройка тока срабатывания) и R10 (ограничение максимального напряжения на выходе) на плате установлены подстроечные резисторы с увеличенным в 1,5 раза номиналом. По окончании настройки БП их можно заменить на постоянные.


Фото 5. Монтажная плата

4. Сборка платы и выносных элементов электронной схемы в полном объеме для испытания, настройки и регулировки выходных параметров.


Фото 6. Узел управления БП

5. Изготовление и подгонка шунта и дополнительного сопротивления для использования микроамперметра в качестве амперметра или вольтметра БП. Дополнительное сопротивление состоит из последовательно соединенных постоянного и подстроечного резисторов (на фото сверху). Шунт (на фото ниже) включается в основную цепь тока и состоит из провода с малым сопротивлением. Сечение провода определяется максимальным выходным током. При измерении силы тока, прибор подключается параллельно шунту.


Фото 7. Микроамперметр, шунт и дополнительное сопротивление

Подгонка длины шунта и величины дополнительного сопротивления производится при соответствующем подключении к прибору с контролем на соответствие по мультиметру. Переключение прибора в режим Амперметр/Вольтметр выполняется тумблером в соответствии со схемой:


Фото 8. Схема переключения режима контроля

6. Разметка и обработка лицевой панели БП, монтаж выносных деталей. В данном варианте на лицевую панель вынесен микроамперметр (тумблер переключения режима контроля A/V справа от прибора), выходные клеммы, регуляторы напряжения и тока, индикаторы режима работы. Для уменьшения потерь и в связи с частым использованием, дополнительно выведен отдельный стабилизированный выход 5 в. Для чего напряжение, от обмотки трансформатора на 8в, подается на второй выпрямительный мост и типовую схему на 7805 имеющую встроенную защиту.


Фото 9. Лицевая панель

7. Сборка БП. Все элементы БП устанавливаются в корпус. В данном варианте, радиатором управляющего транзистора VT1 служит алюминиевая пластина толщиной 5 мм, закрепленная в верхней части крышки корпуса, служащего дополнительным радиатором. Транзистор закреплен на радиаторе через электроизолирующую прокладку.

Для питания устройств, не требующих высокой стабильности напряжения питания, применяют наиболее простые, надежные и дешевые стабилизаторы - параметрические. В таком стабилизаторе регулирующий элемент при воздействии на выходное напряжение не учитывает разницы между ним и заданным напряжением.

В наиболее простом виде параметрический стабилизатор это регулирующий компонент (стабилитрон), подсоединяемый параллельно нагрузке. Надеюсь вы помните , ведь, в отличие от диода, он включается в электрическую цепь в обратном направлении, т. е. на анод следует отрицательный, а на катод - положительный потенциал напряжения от источника. В основе принципа действия такого стабилизатора лежит свойство стабилитрона поддерживать на своих выводах постоянное напряжение при существенных изменениях силы протекающего в схеме тока. Балластное сопротивление R, включенное последовательно с стабилитроном и нагрузкой, ограничивает протикающий ток через стабилитрон, если отключить нагрузку.

Для питания устройств, с напряжением 5 В, в этой схеме стабилизаторе можно применить стабилитрон типа КС 147. Номинал сопротивления резистора R берется таким, чтобы при максимальном уровне входного напряжения и отсоединенной нагрузке ток через стабилитрон не был более 55 мА. Так как в рабочем режиме через это сопротивление протекает ток стабилитрона и нагрузки, его мощность должна быть как минимум 1-2 Вт. Ток нагрузки этого стабилизатора должен лежать в интервале 8-40 мА.

Если выходной ток стабилизатора мал для питания, увеличить его мощность можно, добавив усилитель, например на основе транзистора.

Его роль в этой схеме выполняет транзистор VT1, цепь коллектор - эмиттер которого включается последовательно с нагрузкой стабилизатора. Выходное напряжение такого стабилизатора равно разности входного напряжения стабилизатора и падения напряжения в цепи коллектор - эмиттер транзистора и определяется напряжением стабилизации стабилитрона VD1. Стабилизатор обеспечивает в нагрузке ток до 1 А. В качестве VT1 можно использовать транзисторы типа КТ807, КТ815, КТ817.

Пять схем простых стабилизаторов

Классические схемы, которые неоднократно описаны во всех учебниках и справочниках по электронике.

Рис.1. Стабилизатор по классической схеме без защиты от КЗ в нагрузке. 5В, 1А.


Рис.2. Стабилизатор по классической схеме без защиты от КЗ в нагрузке. 12В, 1А.

Рис.3. Стабилизатор по классической схеме без защиты от КЗ в нагрузке. Регулируемое напряжение 0..20В, 1А

Стабилизатор на 5V 5A построен на основе статьи "Пятивольтовый с системой защиты", Радио №11 за 84г стр. 46-49. Схема действительно оказалась удачной, что не всегда бывает. Легко повторяема.

Особенно хороша идея тиристорной защиты нагрузки при выходе из строя самого стабилизатора. Если ведь он (стабилизатор) погорит, то ремонтировать что он питал себе дороже. Транзистор в стабилизаторе тока VT1 германиевый для уменьшения зависимости выходного напряжения от температуры. Если это не важно можно и кремниевый применить. Остальные транзисторы подойдут любые подходящие по мощности. При выходе из строя регулирующего транзистора VT3 напряжение на выходе стабилизатора превышает порог срабатывания стабилитрона VD2 типа КС156А (5.6V) открывается тиристор и коротит вход и выход, горит предохранитель. Просто и надежно. Назначение элементов регулировок указано на схемах.


Рис.4. Принципиальная схема стабилизатора с защитой от короткого замыкания в нагрузке и тиристорной схемой защитой при выходе из строя схемы самого стабилизатора.

Номинальное напряжение - 5В, ток - 5А.
RP1 - установка тока срабатывания защиты, RP2 - установка выходного напряжения

Следующая схема стабилизатора на 24V 2A

Рис.5. Принципиальная схема стабилизатора с защитой от короткого замыкания в нагрузке.

Номинальное напряжение - 24В, ток - 2А.
RP1 - установка выходного напряжения, R3 - установка тока срабатывания защиты.

Схема расчитанна на ток до 20 ампер. Напряжение на выходе стабилизатора ±19 вольт, а коэффициент стабилизации - не ниже 1000. Каждое плечо запитано гальванически развязанными питанием на 24 вольта, предусмотрена защита от короткого замыкания.


Теоретическая часть по источникам питания

Все существующие источники питания относят к одной из двух групп: первичного и вторичного электропитания. К источникам первичного электропитания относят системы, перерабатывающие химическую, световую, тепловую, механическую или ядерную энергию в электрическую. Например, химическую энергию преобразует в электрическую солевой элемент или батарея элементов, а световую энергию - солнечная батарея.

В состав источника первичного электропитания может входить не только сам преобразователь энергии, но и устройства и системы, обеспечивающие нормальное функционирование преобразователя. Зачастую непосредственное преобразование энергии затруднено, и тогда вводят промежуточное, вспомогательное преобразование энергии. Например, энергия внутриатомного распада на атомной электростанции может быть преобразована в энергию перегретого пара, вращающего турбину электромашинного генератора, механическую энергию которого преобразуют в электрическую энергию.

К источникам вторичного электропитания относят такие системы, которые из электрической энергии одного вида вырабатывают электрическую энергию другого вида. Так, например, источниками вторичного электропитания являются инверторы и конверторы, выпрямители и умножители напряжения, фильтры и стабилизаторы.

Классифицируют источники вторичного электропитания по номинальному рабочему выходному напряжению. При этом различают низковольтные источники питания с напряжением до 100 В, высоковольтные с напряжением более 1 кВ и источники питания со средним выходным напряжением от 100 В до 1 кВ.

Любые источники вторичного электропитания классифицируют по мощности Рн, которую они способны отдать в нагрузку. При этом выделяют пять категорий:

микромощные (Рн < 1 Вт);
маломощные (1 Вт < Рн < 10 Вт);
средней мощности (10 Вт < Рн < 100 Вт);
повышенной мощности (100 Вт < Рн < 1 кВт);
большой мощности (Рн > 1 кВт)

Источники питания могут быть стабилизированными и нестабилизированными. При наличии цепи стабилизации выходного напряжения стабилизированные источники обладают меньшей флюктуацией данного параметра, относительно нестабили-зированных. Поддержание неизменным выходного напряжения может быть достигнуто различными способами, однако все эти способы можно свести к параметрическому или компенсационному принципу стабилизации. В компенсационных стабилизаторах присутствует цепь обратной связи для отслеживания изменений регулируемого параметра, а в параметрических стабилизаторах такая обратная связь отсутствует.

Любой источник питания по отношению к сети обладает следующими основными параметрами:

минимальное, номинальное и максимальное питающее напряжение или относительное изменение номинального напряжения в сторону повышения или понижения;
вид питающего тока: переменный или постоянный;
число фаз переменного тока;
частота переменного тока и диапазон ее флюктуации от минимума до максимума;
коэффициент потребляемой от сети мощности;
коэффициент формы потребляемого от сети тока, равный отношению первой гармоники тока к его действующему значению;
постоянство питающего напряжения, которое характеризуется неизменностью параметров во времени

По отношению к нагрузке источник питания может обладать теми же параметрами, что и по отношению к питающей сети, и дополнительно характеризоваться следующими параметрами:

амплитуда пульсации выходного напряжения или коэффициент пульсации;
величина тока нагрузки;
тип регулировок выходных тока и напряжения;
частота пульсации выходного напряжения источника питания, в общем случае не равная частоте переменного тока питающей сети;
нестабильность выходных тока и напряжения под воздействием любых факторов, ухудшающих стабильность.

Кроме того, источники питания характеризуются:

КПД;
массой;
габаритными размерами;
диапазоном температур окружающей среды и влажности
уровнем генерируемого шума при использовании вентилятора в системе охлаждения;
устойчивостью к перегрузкам и к ударам с ускорением;
надежностью;
длительностью наработки на отказ;
временем готовности к работе;
устойчивостью к перегрузкам в нагрузках, и, как частный случай, коротким замыканиям;
наличием гальванической развязки между входом и выходом;
наличием регулировок и эргономичностью;
ремонтопригодностью.

LM317 как никогда подходит для проектирования несложных регулируемых источников и , для электронной аппаратуры, с различными выходными характеристиками, как с регулируемым выходным напряжением, так и с заданным напряжением и током нагрузки.

Для облегчения расчета необходимых выходных параметров существует специализированный LM317 калькулятор, скачать который можно по ссылке в конце статьи вместе с datasheet LM317.

Технические характеристики стабилизатора LM317:

  • Обеспечения выходного напряжения от 1,2 до 37 В.
  • Ток нагрузки до 1,5 A.
  • Наличие защиты от возможного короткого замыкания.
  • Надежная защита микросхемы от перегрева.
  • Погрешность выходного напряжения 0,1%.

Эта не дорогая интегральная микросхема выпускается в корпусе TO-220, ISOWATT220, TO-3, а так же D2PAK.

Назначение выводов микросхемы:

Онлайн калькулятор LM317

Ниже представлен онлайн калькулятор для расчета стабилизатора напряжения на основе LM317. В первом случае, на основе необходимого выходного напряжения и сопротивления резистора R1, производится расчет резистора R2. Во втором случае, зная сопротивления обоих резисторов (R1 и R2), можно вычислить напряжение на выходе стабилизатора.

Калькулятор для расчета стабилизатора тока на LM317 смотрите .

Примеры применения стабилизатора LM317 (схемы включения)

Стабилизатор тока

Данный стабилизатор тока можно применить в схемах различных зарядных устройств для аккумуляторных батарей или регулируемых источников питания. Стандартная схема зарядного устройства приведена ниже.

В данной схеме включения применяется способ заряда постоянным током. Как видно из схемы, ток заряда зависит от сопротивления резистора R1. Величина данного сопротивления находится в пределах от 0,8 Ом до 120 Ом, что соответствует зарядному току от 10 мА до 1,56 A:

Источник питания на 5 Вольт с электронным включением

Ниже приведена схема блока питания на 15 вольт с плавным запуском. Необходимая плавность включения стабилизатора задается емкостью конденсатора С2:

Схема включения с регулируемым выходным напряжением

Предлагаемый стабилизатор имеет раздельную защиту от перегрузки по току и КЗ. При КЗ на выходе стабилизатора срабатывает узел защиты на VT3 (рис.1). При перегрузке по току срабатывает защита на VS1 и К1.


Рис.1. Схема стабилизатора напряжения

Узел электронной защиты срабатывает, когда ток нагрузки создает на резисторе R6 падение напряжения, достаточное для открывания тиристора VS1, т.е. когда разность напряжений между управляющим электродом и катодом тиристора достигает приблизительно 1 В. Возникающий при этом отрицательный импульс напряжения через диод VD3 поступает на базу транзистора VT3 и практически закрывает его, а следовательно, и регулирующий транзистор VT1. Одновременно диод VD3 защищает транзистор VT3 от попадания на его базу положительного напряжения из анодной цепи тиристора.

Однако электронная система защиты все же не предохраняет полностью транзистор VT1 от теплового пробоя остаточным током, особенно если транзистор уже был разогрет в процессе работы, или продолжительное время не нажимали кнопку SB1.

Для предотвращения теплового пробоя транзистора VT1 и служит электромагнитная система защиты, срабатывающая через несколько миллисекунд (зависит от используемого реле К1) после того, как тиристор VS1 откроется. Тогда срабатывает реле К1. Его контакты К1.1 замыкают базу VT3 на минусовый проводник источника питания, а контакты К1.2 включают светодиод HL2 - сигнализатор действия защиты. После устранения причины перегрузки достаточно кратковременно нажать кнопку SB1, чтобы восстановить прежний режим работы блока питания, не отключая устройство от сети.

На вход стабилизатора подается от выпрямителя постоянное напряжение 40 В. Выходное стабилизированное напряжение от 3 В до 30 В устанавливается резистором R2. Максимальный ток нагрузки - 2 А. Ток нагрузки контролируют головкой РА1, переключив SA1.

Детали стабилизатора смонтированы на плате из фольгированного стеклотекстолита (рис. 2 и 3) и на лицевой панели корпуса блока питания. Регулирующий транзистор VT1 установлен на теплоотводе. Транзистор КТ825А можно заменить на КТ825Б, Г; КТ818В, Г, ВМ, ГМ; КТ814Г - на КТ814В, Б; КТ816Б, В, Г; КТ315В - на КТ315Г, Д, Е.


Рис.2. Печатная плата - сторона печатных проводников


Рис.3. Печатная плата - сторона монтажа

Тиристор КУ202К заменяется на КУ201В...КУ201Л, КУ202В...КУ202Н. Вместо диода Д220А (VD2) подойдут Д219, Д220, Д223, КД102, КД103 с любыми буквенными индексами, а вместо диода КД105Б (VD3, VD4, VD5) - КД106А или любой другой кремниевый с прямым током до 300 мА и обратным напряжением не менее 50 В.

Переменный резистор R2 - любого типа с характеристикой А. Реле К1 - РЭС48А (паспорт РС4.590.206) или другое с двумя группами переключающих контактов, срабатывающее при напряжении не более 30 В.

Резистор R6 выполнен в виде нескольких витков константанового, нихромового или манганинового провода, намотанного на корпус резистора МЛТ-1. Его сопротивление определяется значением тока срабатывания, что, в свою очередь, зависит от напряжения на управляющем электроде тиристора, при котором он открывается. Так, например, если за максимальный ток срабатывания защиты принять 2 А, а тиристор открывается при напряжении на управляющем электроде около 1 В, сопротивление резистора R6 должно быть (по закону Ома) близко к 0,5 Ом. Возможно применение резисторов типа С5-16 соответствующей мощности.

Более точно сопротивление резистора подгоняют под выбранный предел срабатывания защиты в таком порядке. К выходу стабилизатора подключают соединенные последовательно амперметр и проволочный переменный резистор сопротивлением 25...30 Ом. На вход стабилизатора подают соответствующее напряжение от выпрямителя, и резистором R2 устанавливают на выходе напряжение 10...15 В. Затем переменным резистором, выполняющим функцию эквивалента нагрузки, устанавливают по амперметру ток, равный 2 А, и подбором сопротивления резистора R6 добиваются срабатывания системы защиты.

В радиолюбительской практике нередки обстоятельства когда от перегрузки токами меньшего значения, например, 50 или 100 мА, защищать приходится не только сам стабилизатор напряжения, но и питающееся от него устройство. При этом желательно иметь ступенчатую систему защиты, выполненную, например, по схеме, приведенной на рис.4. Здесь резистор R6.1 первой ступени, рассчитанный на минимальный ток защиты 50 мА, включен в стабилизатор постоянно, а параллельно ему переключателем SA2 подключают резисторы R6.2...R6.5 четырех других ступеней: 100 мА, 500 мА, 1 А и 2 А.


Рис.4. Ступенчатая система защиты

Указанные на схеме сопротивления резисторов - ориентировочные. Точнее их можно рассчитать, лишь зная напряжение открывания тиристора, работающего в стабилизаторе. Измерить это напряжение можно так. Движок переменного резистора R2 установите в крайнее нижнее (по схеме) положение и подключите к нему управляющий электрод тиристора, отпаяв его от правого (по схеме) вывода резистора R6.1. Затем включите питание и медленно увеличивайте резистором R2 напряжение на управляющем электроде тиристора. В момент открывания тиристора, о чем просигнализирует светодиод, измерьте вольтметром это напряжение.

Резисторы R6.2...R6.5 монтируются непосредственно на контактах переключателя SA2. Резисторы RS1 и R12 подбираются конкретно под имеющийся измерительный прибор.

Источники

  1. О.Лукьянчиков. Стабилизатор напряжения с двойной защитой от КЗ в нагрузке. - Радио, 1986, N9, С.56.
  2. А.Бизер. Защитные устройства блоков питания. - Радио, 1977, N2, С.47.
  3. Ю.Тимлин. Сдвоенный двухполярный блок питания. - В помощь радиолюбителю, вып. 71. - М.: ДОСААФ, 1980
  4. В.Борисов. Стабилизированный блок питания. - Радио, 1979, N6, С.54.

© 2024 pechivrn.ru -- Строительный портал - Pechivrn