Основные виды и схемы фрезерования. Обработка фрезерованием Ширина и глубина фрезерования

Главная / Обустройство 

Сущность процесса фрезерования. Фрезерование - процесс резания металла, осуществляемый вращающимся режущим инструментом при одновременной линейной подаче заготовки. Материал с заготовки снимают на определенную глубину фрезой, работающей либо торцовой стороной, либо периферией. Главным движением при фрезеровании является вращение фрезы v (рис. 33). Скорость главного движения определяет скорость вращения фрезы. Движением по­дачи s при фрезеровании является по­ступательное перемещение обрабаты­ваемой заготовки в продольном,

Рис. 33. Схемы фрезерования:

а - цилиндрическое, б и в-торцовое фрезерование; 1-обработанная поверхность, 2-ось вращения фрезы, 3 - обрабатываемая поверхность, 4- стружка, 5 - заготовка, 6 - нож фрезы.

поперечном или вертикальном направ­лениях. Процесс фрезерования являет­ся прерывистым процессом. Каждый зуб фрезы снимает дружку перемен­ной толщины. Операции фрезерования могут быть подразделены на два типа: а) цилиндрическое фрезерование (рис. 33, а); б) торцовое фрезерование (оис. 33, б и в ).

При цилиндрическом фрезеровании резание осуществляется зубьями, рас­положенными на периферии фрезы, и обработанная поверхность 1 является плоскостью, параллельной оси враще­ния фрезы 2.

На рис. 33, а показана фреза с пря­мым зубом. Наряду с прямозубыми применяются фрезы с винтовыми зубьями (рис.34).

Рис. 34. Фрезерование цилиндрической винтовой фрезой: В - ширина фрезерования, t - глубина фрезерования, s- наибольшая толщина среза

При торцовом фрезеровании (см. рис. 33) резание осуществляется пери­ферийными и торцовыми режущими кромками зубьев. Толщина среза уве­личивается к центру среза и уменьша­ется в месте выхода фрезы из контак­та с заготовкой. Начальная и конечная толщина среза зависит от отношения ширины заготовки к диаметру фрезы. Изменение толщины среза зависит также от симметричности расположе­ния фрезы относительно заготовки. Большинство других процессов фрезе­рования являются комбинацией ци­линдрического и торцового методов фрезерования.

Особенности стружкообразования при фрезеровании. Процесс образо­вания стружки при фрезеровании со­провождается теми же явлениями, что и при точении. Это деформации, теп­лообразование, образование нароста, вибрации, износ инструмента и др. Но при фрезеровании имеются свои осо­бенности. Резец при точении находит­ся под постоянным действием стружки вдоль всей длины обработки. При фрезеровании зуб за один оборот фре­зы находится под действием стружки незначительное время. Большую часть оборота зуб не участвует в резании, за ^о время он охлаждается, что положительно отражается на его стойко­сти. Вход зуба в контакт с обрабатываемой заготовкой сопровождается ударом о его режущую кромку; ударная нагрузка снижает стойкость зуб; фрезы.


Фрезерование против подачи и по подаче. При фрезеровании цилиндрическими и дисковыми фрезами различают встречное фрезерование - против подачи и попутное-фрезерование по подаче. Когда окружная скорость фрезы противоположна на правлению подачи (рис. 35,а), процесс

Рис. 35. Фрезерование против подачи (о) и по подаче (б)

фрезерования называется встреч­ным. Толщина среза изменяется от ну­ля (в точке А ) до максимальной вели­чины при выходе зуба из контакта с заготовкой (в точке В). Когда направ­ление окружной скорости фрезы и ско­рости подачи совпадают (рис. 35,6), процесс фрезерования называется «по­путным» фрезерованием. При этом способе фрезерования толщина среза изменяется от максимального значения в точке В в начале входа зуба в кон­такт с заготовкой до нуля в точке А (при выходе зуба из контакта с заго­товкой) .

Встречное фрезерование характери­зуется тем, что нагрузка на зуб уве­личивается постепенно, так как тол­щина среза изменяется от нуля при входе до максимума при выходе зуба из заготовки. Зуб фрезы работает из-под корки, выламывая корку снизу, фреза «отрывает» заготовку от стола, приподнимая вместе с ней и стол стан­ка, увеличивая зазоры между направ­ляющими стола и станины, что при значительных нагрузках приводит к дрожанию и увеличению шероховато­сти обработанной поверхности.

При попутном фрезеровании заго­товка прижимается к столу, выбирая имеющиеся зазоры в направляющих стола и станины. Зуб фрезы начинает работать с наибольшей толщиной и сразу подвергается максимальной на­грузке.

Равномерность фрезерования. В процессе фрезерования прямозубой фрезой зуб фрезы входит в контакт с обрабатываемой заготовкой и выходит из него сразу по всей ширине фрезеро­вания. Может оказаться, что в работе будет находиться только один зуб пря­мозубой фрезы, т. е. когда впереди идущий зуб уже вышел из контакта с обрабатываемой заготовкой, а следую­щий за ним зуб не вышел в контакт. В этом случае площадь поперечного сечения среза будет изменяться от ну­левого значения до максимального с последующим падением до нуля или от максимального значения до нуля. Также неравномерно будет изменять­ся сила резания, а следовательно, бу­дет неравномерная периодическая на­грузка на станок, инструмент и обра­батываемую заготовку. Это явления носит название неравномернос­ти фрезерования. На рис. 36

Рис. 36. Схема работы однозубой (условной) фрезой

показана упрощенная схема работы прямозубой фрезы. На фрезе условно показан один зуб. Зуб врезается в за­готовку сразу по всей ширине фрезеро­вания. Фреза испытывает толчок. При дальнейшем повороте фрезы толщина стружки будет постепенно увеличи­ваться (положения 2, 3, 4), будет уве­личиваться и сила резания. На участ­ке 4-5 зуб фрезы одновременно выхо­дит из обрабатываемого металла, и си­ла резания быстро уменьшается до нуля.

Как видно, нагрузка на зуб фрезы в процессе резания резко изменяется. Чем большее число зубьев будет уча­ствовать в работе одновременно, тем более равномерным будет фрезерование. На рис. 37 показана схема рабо­ты цилиндрической фрезы с винтовыми зубьями. Зуб такой фрезы врезается в

Рис. 37. Схема работы фрезы с винтовым зубом

обрабатываемую деталь не сразу по всей длине, а постепенно. На участке 1-3 площадь сечения срезаемого слоя (заштрихована) увеличивается, а зна­чит, увеличивается и сила резания. На участке 3 -4 площадь сечения срезаемого слоя и силы резания оказываются постоянными. При дальнейшем движении зуба (участок 4-6) площадь сечения срезаемого слоя и сила резания постепенно уменьшаются. Таким образом, изменение силы резания при работе винтового зуба происходит более плавно, а на некоторых участках сила резания постоянна.

Для обеспечения равномерности фрезерования в работе одновременно должно участвовать не меньше двух зубьев фрезы. Каждый следующий зуб должен вступать в работу в тот момент, когда предыдущий начинает выходить из металла. Для выполнения этого условия нужно, чтобы в тот мо­мент, когда один из двух зубьев попал в положение 6, второй зуб был в по­ложении 1. Это возможно, если расстояние между двумя соседними зубьями фрезы, измеренное вдоль её оси (осевой шаг), должно быть равной ширине фрезерования В (см. рис. 34). Если в работе одновременно участвует более двух зубьев, то осевой шаг должен укладываться по ширине фрезерования целое число раз. Необходимым условием равномерного фрезеро­вания является равенство или кратность (в целых числах) ширины фре­зерования В осевому шагу фрезы.

При торцовом фрезеровании всег­да имеет место неравномерность фрезерования. Чем больше число одновременно работающих зубьев торцовой фрезы и чем больше отношение шири­ны фрезерования к диаметру фрезы, тем больше будет равномерность фре­зерования.

Практическое занятие 1,2. Основы металлообработки

План занятия:

1. Особенности процесса фрезерования

Существуют различные виды механической обработки: точение, фрезерование, сверление, строгание и т.д. Несмотря на конструкционные отличия станков и особенности технологий, управляющие программы для фрезерных, токарных, электроэрозионных, деревообрабатывающих и других станков с ЧПУ создаются по одному принципу.

Процесс фрезерования заключается в срезании с заготовки лишнего слоя материала для получения детали требуемой формы, размеров и шерохо­ватости обработанных поверхностей. При этом на станке осуществляется перемещение инструмента (фрезы) относительно заготовки или перемещение заготовки относительно инструмента.

Для осуществления процесса резания необходимо иметь два движения - главное и движение подачи . При фрезеровании главным движением является вращение инструмента, а движением подачи является поступательное движение заготовки. В процессе резания происходит образование новых поверхностей путем деформирования и отделения поверхностных слоев с образованием стружки.

При обработке различают встречное и попутное фрезерование. Попутное фрезерование или фрезерование по подаче - способ, при котором направления движения заготовки и вектора скорости резания совпадают. При этом толщина стружки на входе зуба в резание максимальна и уменьшается до нулевого значения на выходе. При попутном фрезеровании условия входа пластины в резание более благоприятные. Удается избежать высоких температур в зоне резания и минимизировать склонность материала заготовки к упрочнению. Большая толщина стружки является в данном случае преиму­ществом. Силы резания прижимают заготовку к столу станка, а пластины - в гнезда корпуса, способствуя их надежному креплению. Попутное фрезерование является предпочтительным при условии, что жесткость оборудования, крепления и сам обрабатываемый материал позволяют применять данный метод.

Встречное фрезерование, которое иногда называют традиционным, наблюдается, когда скорости резания и движение подачи заготовки направлены в противоположные стороны. При врезании толщина стружки равна нулю, на выходе - максимальна. В случае встречного фрезерования, когда пластина начинает работу со стружкой нулевой толщины, возникают высокие силы трения, отжимающие фрезу и заготовку друг от друга. В начальный момент врезания зуба процесс резания больше напоминает выглаживание, с сопутствующими ему высокими температурами и повышенным трением. Зачастую это грозит нежелательным упрочнением поверхностного слоя детали. На выходе из-за большой толщины стружки в результате внезапной разгрузки зубья фрезы испытывают динамический удар, приводящий к выкрашиванию и значительному снижению стойкости.



На толщину срезаемого слоя при фрезеровании влияет главный угол в плане, который измеряется между главной режущей кромкой пластины и обрабатываемой поверхностью. Уменьшение угла в плане ведет к образованию более тонкой стружки для данного диапазона подач. Уменьшение толщины стружки происходит из-за распределения одного и того же объема снимаемого металла на большей длине режущей кромки. При меньшем угле в плане режущая кромка постепенно входит в работу и выходит из нее. Это уменьшает радиальную составляющую силы резания и защищает режущую кромку от возможных поломок. С другой стороны, неблагоприятным фактором является увеличение осевой составляющей силы резания, что вызывает ухудшение шероховатости поверхности тонкостенных деталей.

При угле в плане 90° сила резания направлена радиально в соответствии с направлением подачи. Основная область применения таких фрез - обработка прямоугольных уступов.

При работе фрезой с углом в плане 45° осевые и радиальные силы резания практически одинаковы и потребляемая мощность невысока. Это фрезы универсального применения. Особенно они рекомендуются для обработки материалов, дающих элементную стружку и склонных к выкрашиванию при значительных радиальных усилиях на выходе инструмента. При врезании инструмента меньше нагрузка на режущую кромку и меньше склонность к вибрациям при закреплении в приспособлениях с небольшими усилиями зажима. Меньшая толщина срезаемого слоя при угле в плане 45° позволяет увеличивать минутную подачу стола, т.е. повысить производительность об работки.

Фрезы с углом в плане 10° рекомендуются для продольного фрезерования с большими подачами и плунжерного фрезерования, когда характерны небольшие толщины стружки и высокие скоростные параметры. Преимуществом обработки такими фрезами являются низкие радиальные усилия резания. А также преобладание осевой составляющей силы резания, как при радиальном, так и при осевом направлении подачи, что уменьшает склонность к вибрациям и предоставляет большие возможности для увеличения скоростей снятия материала.

У фрез с круглыми пластинами главный угол в плане меняется от 0 до 90° в зависимости от глубины резания. Эти фрезы имеют очень прочную режущую кромку и могут работать при больших подачах, поскольку образуют довольно тонкую стружку на большой длине режущей кромки. Фрезы с круглыми пластинами рекомендуется применять для обработки труднообрабатываемых материалов, таких как титан и жаропрочные сплавы. Направление сил резания меняется вдоль радиуса пластины, поэтому направление суммарной нагрузки зависит от глубины резания. Современная геометрия круглых пластин делает их более универсальными, обеспечивая стабильность процесса резания, меньшую потребляемую мощность и, соответственно, меньшие требования к жесткости оборудования. В настоящее время эти фрезы широко используются для снятия больших объемов металла.

Лабораторная работа № 5

Фрезерные станки, их кинематика и виды выполняемых работ

Цель работы – изучение устройства, назначения и кинематики горизонтально- и вертикально-фрезерных станков, а также видов, конструкции и назначения фрез.

Фрезерование является одним из высокопроизводительных и распространенных методов обработки заготовок резанием. Обработка производится многолезвийными инструментами – фрезами. Особенностью фрезерования является прерывистость процесса резания – каждый зуб фрезы «работает», т.е. находится на дуге резания только на некоторой части оборота. В остальное время зуб не касается заготовки, что способствует его эффективному охлаждению.

Фрезерные станки в основном предназначены для обработки различно ориентированных плоских поверхностей, пазов, канавок, уступов, а также фасонных поверхностей, в том числе для нарезания наружных зубьев и шлицов. В связи с многообразием фрезерных работ существуют различные типы станков, которые подразделяют на станки общего назначения и специальные. К станкам общего назначения относят горизонтально-фрезерные, у которых ось шпинделя горизонтальна, и вертикально-фрезерные, у которых ось шпинделя вертикальна. К этой же группе относят универсальные фрезерные станки, у которых положение оси шпинделя можно менять. На любом из фрезерных станков общего назначения можно выполнять различные виды работ, используя разные фрезы и приспособления. К специальным относят станки более узкого назначения: шпоночные, шлицевые, резьбофрезерные, зубофрезерные, копировально-фрезерные и т.д. На специальном станке можно выполнять какую-либо одну операцию, с большей производительностью и точностью, чем на станках общего назначения.

На рис. 1 показан общий вид горизонтально-фрезерного станка, на рис. 1 – общий вид вертикально-фрезерного станка.

Рис. 1 Горизонтально-фрезерный станок

Рис. 2 Вертикально-фрезерный станок

При фрезеровании главным рабочим движением является вращение фрезы, а движением подачи - чаще всего поступательное перемещение заготовки, закрепленной на столе станка. На станках общего назначения возможны три вида подачи: продольная, поперечная и вертикальная.

Режимами резания при фрезеровании являются следующие параметры.

    Скорость резания.

, м/мин,

где D ф, мм – диаметр фрезы,

n, об/мин – частота вращения шпинделя.

    Глубина резания t, мм – толщина слоя металла, срезаемого фрезой за один проход.

    Подача – перемещение заготовки в единицу времени. При фрезеровании различают три вида подачи – минутную (s м, мм/мин), на один оборот фрезы (s о, мм/об), на один зуб фрезы (s z , мм/зуб). Эти виды подачи связаны между собой следующим соотношением.

, мм/об,

где z – число зубьев фрезы.

    Ширина фрезерования В, мм – ширина поверхности, обрабатываемой за один проход, измеренная в направлении, перпендикулярном оси фрезы (для вертикально-фрезерных станков) или в направлении, параллельном оси фрезы (для горизонтально-фрезерных станков).

При фрезеровании используют различные типы фрез, основные из которых представлены на рис. 3.

Рис. 3 Фрезы

При работе цилиндрическими, дисковыми, угловыми, фасонными и отрезными фрезами различают два вида фрезерования – встречное и попутное (рис. 4).

При встречном фрезеровании направления вращения фрезы и подачи заготовки противоположны друг другу. Толщина стружки при этом возрастает от нуля в момент входа зуба на дугу резания до максимального значения в момент выхода зуба с дуги резания (зуб фрезы режет металл «под корку»). Так как сила резания прямо пропорциональна толщине стружки, то нагрузка на зуб фрезы будет расти постепенно, что благоприятно сказывается на стойкости инструмента и дает возможность работать с большой глубиной резания. При встречном фрезеровании вертикальная составляющая силы резания направлена вверх, стремится оторвать заготовку от стола, что приводит к возникновению вибраций, уменьшению точности и увеличению шероховатости обработанной поверхности. Этот вид фрезерования используют при черновой обработке.

Рис. 4 Схемы фрезерования: а – встречное, б - попутное

При попутном фрезеровании направления вращения фрезы и подачи заготовки совпадают. Толщина стружки в момент входа зуба фрезы на дугу резания будет максимальна, затем плавно уменьшится до нуля. Таким образом, фреза работает с ударом об обрабатываемую поверхность, что отрицательно сказывается на ее стойкости. Вертикальная составляющая силы резания направлена вниз и прижимает заготовку к столу, что способствует улучшению качества обработанной поверхности. Этот вид фрезерования используется при чистовой обработке.

Порядок выполнения работы

    Ознакомиться с методическими указаниями.

    Изучить функциональное назначение основных узлов горизонтально- и вертикально-фрезерного станков. В эскизной форме дать общую компоновку одного из станков с указанием основных узлов.

    Определить тип выданной преподавателем фрезы, выполнить ее эскиз, определить, на каком станке и для выполнения каких операций используется фреза. Изобразить схему обработки детали этой фрезой.

    Изучить кинематические схемы одного или нескольких фрезерных станков (модели станков указываются преподавателем).

    Изучить кинематическую схему универсальной делительной головки и методы деления.

    Составить отчет.

    Цель работы.

    Общий вид станка с указанием основных узлов.

    Рабочие движения и режимы резания при фрезеровании.

    Эскиз фрезы с необходимыми комментариями.

    Схема обработки детали фрезой.

    Выбрать метод деления (простое, методом двух отсчетов, дифференциальное) и произвести деление для нарезания зубчатого колеса с количеством зубьев, заданным преподавателем.

Одним из способов отделки материалов является фрезерование. Оно используется для обработки металлических и неметаллических заготовок. Рабочий процесс контролируется с помощью режимов резания.

Суть процесса

Фрезерование осуществляется с целью глубокой черновой и чистовой обработки, формирования определённого профиля поверхности (пазы, канавки), нарезания зубьев на зубчатых колесах, корректировки формы, художественного вытачивания узоров и надписей.

Рабочий инструмент - фреза - совершает главное вращающее движение. Вспомогательным является поступательная подача заготовки относительно ее хода. Этот процесс имеет прерывистый характер. Его важнейшая особенность, которая отличает от точения и сверления - тот факт, что каждый зуб работает отдельно. В связи с этим, для него характерно наличие ударных нагрузок. Уменьшить их влияние возможно с учетом рациональной оценки ситуации и подбора режимов.

Основные понятия о работе фрезерных станков

В зависимости от способа расположения шпинделя и крепления фрезы в нем, от видов осуществляемых действий и от способов управления, выделяют основные типы фрезеровального оборудования:

  • горизонтальные;
  • вертикальные;
  • универсальные;
  • фрезерные станки с ЧПУ.

Основные узлы вертикально-фрезерного станка:

  1. Станина, в которой размещается коробка скоростей, регулирующая вращение вертикально установленного шпинделя и закрепленной на нем фрезы.
  2. Стол, включающий в себя консоль с поперечными полозками для крепления и перемещения заготовки и коробку подач, регулирующую движения подачи.

В горизонтально-фрезерных станках инструмент закрепляется горизонтально. А универсальные имеют несколько разновидностей.

Существует универсальное горизонтальное оборудование, для которого характерно наличие оборотности стола и, тем самым, расширение спектра возможных выполняемых работ. Кроме того, имеется широкоуниверсальное, имеющее в своем строении оба шпинделя и позволяющее осуществлять все виды фрезерования.

С ЧПУ отличаются наличием программного обеспечения и компьютерного управления. Они предназначены для художественной обработки заготовок, в том числе в 3D-формате.

Классификация фрез

Фрезы - это приспособления для резания. Основные физические параметры, с помощью которых они оцениваются: высота, диаметр, величины фаски и затылования, окружной шаг. Существует их огромное разнообразие, распределяющиеся по различным признакам:

  • по типу поверхностей, которые обрабатываются (для дерева, пластика, стали, цветных металлов и др);
  • по направлению движения вращения - праворежущие и леворежущие;
  • в зависимости от конструкционных особенностей - цельные, напайные, складные (имеют вставные ножи), сварные;
  • по форме: конические, цилиндрические, дисковые;
  • в зависимости от условий работы и требований к режущей части, могут изготавливаться из различных материалов. К ним относятся: углеродистая инструментальная и быстрорежущая сталь (легированная, с повышенным содержанием вольфрама), твердый сплав (прочный - для черновой обработки, износостойкий - для чистовой). Распространены варианты, когда корпус изготовлен из углеродистой или быстрорежущей стали, а ножи - вставные твердосплавные;
  • в зависимости от назначения: цилиндрические, торцевые, концевые, прорезные, отрезные, фасонные.

Наиболее информативные признаки: материал режущей кромки и назначение.

Виды фрез для плоских поверхностей

С целью снятия слоев материала на горизонтальных, вертикальных или наклонных плоскостях, используются цилиндрические и торцевые фрезы.

Инструмент первого вида может быть цельным либо с насадными ножами. Большие цельные фрезеровальные насадки предназначены для черновой обработки, а малые - для чистовой. Вставные ножи для складных режущих головок могут быть изготовлены из быстрорежущей стали либо оборудованы пластинками из твердых сплавов. Твердосплавные фрезы имеют большую производительность работы, чем сделанные из легированного стального сплава.

Торцевая применяется для удлиненных плоскостей, ее зубья распределяются на торцевой поверхности. Большие складные используются для широких плоскостей. Кстати, для снятия стружки со сложно обрабатываемых тугоплавких металлов обязательно наличие твердосплавных ножей. Для применения этих групп фрезеровальных приспособлений нужна значительная ширина и длина изделия.

Виды инструментов для художественного фрезерования

Для придания материалу определенного профиля, нанесения узора, формирования нешироких углублений применяются концевые и дисковые фрезеровальные насадки.

Концевая или распространена для вырезания пазов, узких и криволинейных плоскостей. Все они - цельные или сварные, режущая часть из быстрорежущей легированной стали, может быть наплавлен твердосплав, а корпус сделан из углеродистой стали. Существуют малозаходные (1-3 спирали) и многозаходные (4 и больше). Используются для станков с ЧПУ.

Дисковая - это также фреза пазовая. Она применима для канавок, пазов, нарезания зубов на зубчатых колесах.

Художественное фрезерование осуществляется на древесине, металле, ПВХ.

Виды фрез для обработки кромок

Снятие стружки с углов, придание им рациональной формы, моделирование, разделение заготовки на части можно реализовывать с помощью шлицевых, угловых и фасонных фрезеровальных насадок:

  1. Отрезная и шлицевая имеет то же назначение, что и дисковая, однако чаще используются для надрезов и отделения лишних частей материала.
  2. Угловая необходима для кромок деталей и углов. Существуют одноугловые (лишь одна режущая часть) и двухугловые (режущими являются обе конические поверхности).
  3. Фасонная используется для сложных конструкций. Может быть полукруглой или вогнутой. Часто применяется для нарезания профиля метчиков, зенкеров,

Практически для всех типов возможна цельная стальная конструкция либо складная, с наличием вставных твердосплавных ножей. Твердосплавные фрезы имеют качественно более высокие показатели работы и ее продолжительности для инструмента в целом.

Классификация видов фрезерования

Существует несколько классификационных признаков, по которым разделяют виды фрезерования:

  • по способу расположения шпинделя и фрезы, соответственно, на горизонтальное и вертикальное;
  • по направлению движения, на встречное и попутное;
  • в зависимости от используемого инструмента, на цилиндрическое, торцевое, фасонное, концевое.

Цилиндрическая обработка применима для горизонтальных плоскостей, осуществляется с помощью соответствующих фрез на горизонтальных станках.

Концевая отделка обеспечивает формирование необходимого профиля криволинейным канавкам, сверлам и приборам.

Фасонная обработка осуществляется для поверхностей со сложной конфигурацией: углов, кромок, пазов, нарезания зубьев для зубчатых колес.

Вне зависимости от вида осуществляемых работ и обрабатываемых материалов, результат должен отличаться высокой гладкостью финишного слоя, отсутствием зазубрин, точностью отделки. С целью получения чистой обработанной поверхности важно контролировать величины подач заготовки по отношению к инструменту.

Встречное и попутное фрезерование

Когда выполняется фрезерование металла встречного типа - заготовка подается навстречу вращательным движениям насадки. При этом зубья постепенно врезаются в обрабатываемый метал, нагрузка увеличивается прямопропорционально и равномерно. Однако перед врезанием зуба в деталь, он некоторое время скользит, образовывая наклеп. Это явление ускоряет выход фрезы из рабочего состояния. Используется при черновой обработке.

При выполнении попутного типа - заготовка подается по ходу вращательных движений инструмента. Зубья работают ударно под большими на 10% ниже, чем при встречном фрезеровании. Осуществляется при чистовой обработке деталей.

Основные понятие о фрезерных работах на станках с ЧПУ

Они характеризуются высокой степенью автоматизации, точностью рабочего процесса, высокой продуктивностью. Фрезерование на станке с ЧПУ осуществляется чаще всего с помощью торцевых или концевых фрез.

Последние - наиболее широко используемые. При этом, в зависимости от обрабатываемого материала, соответствующего типа образующей стружки, заданных параметров программного обеспечения, используются разные концевые фрезы. Они классифицируются по числу заходов спиралей, которые обеспечивают наличие режущих кромок и канавный отвод стружки.

Материалы с широкой стружкой целесообразно фрезеровать с помощью инструментов малого количества заходов. Для твердых металлов с характерной стружкой излома необходимо выбирать фрезеровальные приспособления с большим количеством спиралей.

Использование фрез для станков с ЧПУ

Малозаходные фрезы для ЧПУ могут иметь от одной до трех режущих кромок. Они используются для дерева, пластмассы, композитов и мягких податливых металлов, требующих быстрого отвода широкой стружки. Применяются для черновой обработки заготовок, к которым не ставятся высокие требования. Для данного инструмента характрена небольшая производительность, невысокая жесткость.

С помощью однозаходных осуществляется художественное фрезерование алюминия.

Широко используемыми являются двух- и трехзаходные концевые. Они обеспечивают жесткость более высоких значений, качественный отвод стружки, позволяют работать с металлами средней твердости (например, со сталью).

Многозаходные фрезы для ЧПУ имеют более 4-х режущих кромок. Применяются для металлов средней и высокой твердости, для которых характерна мелкая стружка и высокое сопротивление. Им свойствена значительная производительность, они актуальны для чистовой и получистовой обработки и не рассчитаны на работу с мягкими материалами.

С целью правильного выбора инструмента для станков с ЧПУ важно учитывать режим резания при фрезеровании, а также все характеристики обрабатываемой поверхности.

Режимы резания

Для обеспечения нужного качества фрезерованного слоя важно правильно определить и поддерживать необходимые технические параметры. Основными показателями, описывающими и регулирующими фрезеровочный процесс, являются режимы работы.

Расчет при фрезеровании производится с учетом основных элементов:

  1. Глубина (t, мм) - толщина металлического шара, который снимается за один рабочих ход. Выбирают ее с учетом припуска на обработку. Черновые работы осуществляются за один проход. Если припуск составляет более 5 мм, то фрезерование проводят в несколько проходов, при этом на последний оставляют около 1 мм.
  2. Ширина (B, мм) - ширина обрабатываемой поверхности в направлении, перпендикулярном движению подачи.
  3. Подача (S) - длина перемещения заготовки относительно оси инструмента.

Выделяют несколько взаимосвязанных понятий:

  • Подача на один зуб (S z , мм/зуб) - изменение положения детали при повороте фрезы на расстояние от одного рабочего зуба к следующему.
  • Подача на один оборот (S об, мм/об) - перемещение конструкции при одном полном обороте фрезеровальной насадки.
  • Подача за одну минуту (S мин, мм/мин) - важный режим резания при фрезеровании.

Их взаимосвязь устанавливается математематически:

S мин =S об *n= S z *z*n,

где z - количество зубьев;

n - частота вращения шпинделя, мин -1 .

На величину подачи также влияют физические и технологические свойства обрабатываемой площади, прочность инструмента и рабочие характеристики механизма подач.

Расчет скорости резания

В качестве номинального расчетного параметра принимают степень быстрого оборота шпинделя. Фактическая скорость V, м/мин зависит от диаметра фрезы и частоты ее вращающихся движений:

Частота вращения фрезерного инструмента определяется:

n=(1000*V)/(π*D)

Имея информацию о минутной подаче, можно определить необходимое время для заготовки c длиной L:

Расчет режимов резания при фрезеровании и их установку актуально осуществлять перед наладкой станка. Установление рациональных заданных параметров, с учетом характеристик инструмента и материала детали, обеспечивает высокую продуктивность работ.

Невозможно идеально подобрать режим резания при фрезеровании, однако можно руководствоваться основными принципами:

  1. Желательно, чтобы диаметр фрезы соответствовал глубине обработки. Это обеспечит очищение поверхности за один проход. Тут основной фактор - материал. Для слишком мягких этот принцип не действует - существует риск снятия стружки, толщиной большей, чем необходимо.
  2. Ударные процессы и вибрации неминуемы. В связи с этим, увеличение значений подачи ведет к снижению скорости. Оптимально начинать работу с подачи на зуб, равной 0,15 мм/зуб, а в процессе - регулировать.
  3. Частота вращения инструмента не должна быть максимально возможной. В противном случае существует риск снижения скорости резания. Ее повышение возможно с увеличением диаметра фрезы.
  4. Увеличение длины рабочей части фрезы, предпочтение большого количества зубьев понижают производительность и качество обработки.
  5. Ориентировочные значения скоростей для различных материалов:
  • алюминий - 200-400 м/мин;
  • бронза - 90-150 м/мин;
  • нержавеющая сталь - 50-100 м/мин;
  • пластмассы - 100-200 м/мин.

Лучше начинать со средней скоростью, а в процессе корректировать ее в меньшую или большую сторону.

Режим резания при фрезеровании важно определять не только математически или с помощью специальных таблиц. Для правильного выбора и установки оптимальных параметров для станка и нужного инструмента необходимо оперировать некоторыми особенностями и личным опытом.

Фрезерование применяется для обработки плоскостей, уступов, пазов, разрезки заготовок и др. В состав металлорежущей системы входят фрезерный станок, фреза, приспособление для удержания заготовки (например, тиски). В процессе работы вращается закрепленный в шпинделе инструмент и в любом из трех направлений перемещается заготовка, закрепленная на столе фрезерного станка. Технологические возможности фрезерования - достижение 7...12 квалитета точности и шероховатости обработанной поверхности Rа ³ 1.6 мкм.

Фреза - многолезвийный инструмент для обработки с вращательным главным движением резания без возможности изменения радиуса траектории этого движения и хотя бы с одним движением подачи, направление которого не совпадает с осью вращения (ГОСТ 25751-83).

Фрезы - один из наиболее широко применяемых инструментов в металлообработке, фрезы отличаются большим разнообразием типов и конструкций. На рис.17 приведены примеры обработки цилиндрической а), торцевой б), концевой в), дисковой трехсторонней г), дисковой одноугловой д), дисковой двусторонней е), дисковой фасонной ж), для обработки Т-образных пазов фрезами. Для всех эскизов направление движение подачи перпендикулярно плоскости чертежа .


Цилиндрическое фрезерование применяется для обработки плоскостей. Технологические возможности - достижение 12 квалитета точности и шероховатости обработанной поверхности Rа 6.3-12.5 мкм. Цилиндрическая фреза (рис. 18) может изготавливаться с прямыми или винтовыми зубьями. Винтовые зубья повышают равномерность процесса фрезерования, снижая ударные нагрузки. Каждый зуб фрезы несет на себе одну режущую кромку К, сформированную в результате пересечения задней А a и передней А g поверхностей. Цилиндрическая фреза является насадным инструментом, ее присоединительной частью служит отверстие со шпоночным пазом для передачи крутящего момента от шпинделя станка.


В процессе работы (рис. 19) фреза располагается на оправке, закрепляемой на станке с двух сторон. Фреза совершает главное вращательное движение резания, перпендикулярно оси вращения перемещается заготовка (движением подачи), закрепленная на столе станка. В технологических картах обработки задаются частота вращения шпинделя n, подача на зуб S Z , минутная подача S М, глубина резания t, и ширина фрезерования В. Физические параметры режима резания определяются следующим образом :

Скорость резания V рассчитывается так же, как при обработке осевым инструментом. Фигура, образуемая контуром зубьев за один цикл главного движения (1 / Z число оборотов) имеет сложную форму сегмента. В расчетах сечения среза ширина b принимается равной ширине фрезерования В (t =B). Толщина среза a не является постоянной величиной, максимальная толщина

В расчетах средняя толщина среза а СР определяется на половине угла контакта d.


В зависимости от направления перемещения заготовки различают встречное и попутное фрезерование. В случае совпадения направлений векторов скорости резания V и подачи S фрезерование называется попутным, при противоположных направлениях (рис. 15) – встречным .

В настоящее время цилиндрическое фрезерование практически не используется в производстве для получения плоскостей ввиду низкой производительности и чистоты поверхности. Однако, цилиндрические фрезы часто применяются в наборах (несколько фрез разного диаметра на одной оправке) для одновременной обработки ступенчатых поверхностей.

Торцевое фрезерование является основным способом обработки плоскостей. Технологические возможности - достижение 7 квалитета точности и шероховатости обработанной поверхности Rа 6.3-1.6 мкм. Торцевая фреза (рис. 20) представляет собой корпус, несущий на себе режущие элементы (зубья, ножи), расположенные на торце. Такая конструкция позволяет использовать фрезы большого диаметра со значительным числом зубьев, что увеличивает производительность обработки по сравнению с цилиндрическим фрезерованием, так как в каждый момент в контакте с заготовкой находится большое число работающих режущих элементов. Торцевая фреза является насадным инструментом, в процессе работы закрепляется на оправке, консольно зажатой в шпинделе станка. Базирование на оправке производится по цилиндрическому отверстию и верхнему торцу корпуса. Для передачи крутящего момента предусматривается осевая или торцевая шпонка.

Каждый зуб фрезы по конструкции может рассматриваться как резец для наружного продольного точения (рис. 6). Отличие заключается лишь в конструкции крепежно-присоединительной части, обеспечивающей жесткую связь с корпусом фрезы.


В процессе фрезерования (рис. 21) инструмент совершает главное вращательное движение резания, заготовка, закрепленная на столе станка, совершает прямолинейное движение подачи в плоскости, перпендикулярной оси вращения. В технологических картах обработки задаются частота вращения шпинделя n, подача на зуб S Z , минутная подача S М, глубина резания t, и ширина фрезерования В.

Параметры режима резания определяются следующим образом:

Скорость резания V рассчитывается так же, как при обработке осевым инструментом. Фигура, образуемая контуром зубьев за один цикл главного движения (1 / Z число оборотов) имеет форму сегмента. В расчетах сечения среза ширина b = t / sin j. Толщина а является переменной величиной, максимальное значение a MAX = S Z sin j.



Концевая фреза (рис. 22) предназначена для обработки уступов, пазов и контурных участков детали. Рабочая часть фрезы образована винтовыми зубьями, разделенными стружечными канавками. Каждый зуб образуется передней главной А g задней поверхностью А a на периферии и вспомогательной задней поверхностью А a 1 на торце. Главная режущая кромка К - винтовая, вспомогательная К 1 - прямая. Присоединительной частью концевых фрез является конический или цилиндрический хвостовик.

© 2024 pechivrn.ru -- Строительный портал - Pechivrn