Основы генетики: законы Менделя. Законы Менделя 1и 2 законы менделя

Главная / Семейный бюджет

Грегор Мендель – основоположник генетики! Краткая История жизни.


22 июля 1822 года – в небольшой деревушке на территории современной Чехии родился ученый Г. Мендель, который при крещении был назван Иоганном.

В 1843 году Мендель был принят в августинский монастырь святого Томаша и выбрал орденское имя Грегориус.

В 1854 году Менделю был выдан участок земли (35х7 м), на котором он весной впервые посеял горох.

В 1865 году Мендель изложил результаты своих опытов в работе «Опыты над растительными гибридами» и доложил о ней на заседании Брюннского общества естественных наук.

Весной 1868 года Мендель был избран новым аббатом августинского монастыря святого Томаша.

В январе 1884 года вследствие тяжелой болезни сердца и почек основатель генетики Иоганн Грегор Мендель умер.

Горох посевной – как объект генетики.

Первые свои опыты Мендель проводил на таком растении, как Горох посевной. Почему именно этот объект он выбрал? Ниже приведены признаки, по которым можно считать, что выбранный объект был удачным:

- Удобство в культивировании гороха;

- Самоопыление;

- Четко выраженные признаки;

- Крупные цветки, хорошо переносящие кострирование и защищенные от чужой пыльцы;

- Плодовитые гибриды.

Мендель выделил 7 пар альтернативных признаков:

    • Форма семян,

    Окраска кожуры семян,

    Форма бобов,

  • Окраска незрелого боба,
  • Расположение цветка,
  • Длина стебля.

Гибридологический метод Менделя. Законы Менделя при моногибридном скрещивании.

Гибридологический метод – это система скрещиваний, позволяющая проследить закономерности наследования и изменения признаков в ряду поколений.

Предпосылки создания метода.

Предпосылки Отличительные особенности опытов Менделя
  • Клеточная теория (1838-1839 гг) Т. Шванн, М. Шлейден
  • Теория естественного отбора (Ч. Дарвин),
  • Элементы математической статистики и теория вероятности.
  • Изучал наследование отдельных альтернативных (взаимоисключающих) признаков, тогда как его предшественники изучали наследственность, как единое целое.
  • Допускал к скрещиванию родительских особей, являющихся чистыми линиями (ГМЗ) с постоянным значением исследуемых альтернативных признаков. Чистоту линий неоднократно проверял в ходе анализирующего скрещивания.
  • Для исследований выбрал горох посевной, имеющий несколько пар альтернативных признаков, для которых установленные Менделем закономерности имели наиболее простой вид.
  • Вел строгий количественный учет гибридов растений от каждой родительской пары и по каждой паре контрастных альтернативных признаков, что дало возможность выявить статистические закономерности.

Моногибридное скрещивание – это скрещивание особей, отличающихся по одной паре контрастных альтернативных признаков.

I закон Менделя (закон единообразия гибридов первого поколения, закон доминирования):

При скрещивании двух родительских особей, относящихся к разным чистым линиям (ГМЗ) и отличающихся по одной паре контрастных альтернативных признаков, все гибриды первого поколения будут единообразны как по генотипу, так и по фенотипу.

Следствия:

1. Доминирование – это явление преобладания признаков одного из родителя у гибридов первого поколения. Признак, проявляющийся у гибридов первого поколения называется, доминантным, а подавляемый – рецессивным.

2. Если при скрещивании двух родительских особей с противоположными признаками в фенотипе, в их потомстве все гибриды одинаковы или единообразны, то исходные родительские особи были ГМЗ.

3. Гипотеза чистоты гамет:

Гаметы чисты, т. к. несут только 1 ген (наследственный фактор) из пары. Гибриды получают оба наследственных фактора – один от матери, второй – от отца.

II закон Менделя (закон расщепления признаков):

Рецессивный признак не исчезает бесследно, а находится в подавленном состоянии у гибридов первого поколения и проявляется у гибридов второго поколения в соотношении 3:1.

Следствия:

1. Расщепление признаков – это явление появления в потомстве разных фено- и генотипических классов.

2. Если при скрещивании двух родительских особейс одинаковыми признаками в фенотипе, в потомстве произошло расщепление в соотношении 3:1, то исходные особи были ГТЗ.

Цитологический механизм:

1. Соматические клетки диплоидны и содержат парные аллельные гены, отвечающие за развитие каждой пары контрастных признаков.

2. в результате мейоза в гаметы попадает 1 ген из каждой пары, т.к. гаметы гаплоидны.

3. при оплодотворении происходит слияние гамет и восстановление диплоидного набора хромосом (восстанавливается парность генов)

Анализирующее скрещивание.

Это скрещивание, проводимое с целью установления генотипа исследуемой особи с доминантными признаками в фенотипе.

Для этого исследуемую особь скрещивают с рецессивной ГМЗ и по потомству судят о генотипе исследуемой особи:


ВЗАИМОДЕЙСТВИЕ АЛЛЕЛЬНЫХ ГЕНОВ:

Полное доминирование,

Неполное доминирование,

Сверхдоминирование,

Кодоминирование,

Множественный аллелизм.

Взаимодействие генов – явление, когда за развитие признака отвечает несколько генов (аллелей).

          • Если взаимодействуют гены одной аллельной пары, такое взаимодействие называется аллельным, а если разных аллельных пар – неаллельным.
  • ПОЛНОЕ ДОМИНИРОВАНИЕ – такое взаимодействие, при котором 1 ген полностью подавляет (исключает) действие другого признака.

Механизм:

1. Доминантный аллель в ГТЗ состоянии обеспечивает синтез продуктов достаточный для проявления признака такого же качества и интенсивности, как и в состоянии доминантной ГМЗ у родительской формы.

2. Рецессивный аллель либо совсем неактивен, либо продукты его активности не взаимодействуют с продуктами активности доминантного аллеля.

  • НЕПОЛНОЕ ДОМИНИРОВАНИЕ - промежуточный характер наследования. Это такой тип взаимодействия аллельных генов, при котором доминантный ген не полностью подавляет действие рецессивного гена, в следствие чего гибриды первого поколения (ГТЗ) имеют промежуточныймежду родительскими формами фенотипический вариант.

При этом во втором поколении расщепление по генотипу и фенотипу совпадает и равно 1:2:1.

Механизм:

1. Рецессивный аллель не активен.

2. Степень активности доминантного аллеля достаточна, чтобы обеспечить уровень проявления признака, как у доминантной ГМЗ.

  • КОДОМИНИРОВАНИЕ - это явление, при котором оба гена находят свое проявление в фенотипе потомства, при этом ни один из них не подавляет действие другого гена. Кодоминантные гены являются равнозначными. (Например, чалая окраска крупного рогатого скота формируется при одновременном присутствии в генотипе генов рыжей и белой масти. ; группа крови у человека). При кодоминировании 1:2:1.
  • СВЕРХДОМИНИРОВАНИЕ – это такой тип взаимодействия аллельных генов, когда доминантный ген в ГТЗ состоянии демонстрирует более яркое проявление признака, чем этот же ген в ГМЗ состоянии.
  • МНОЖЕСТВЕННЫЙ АЛЛЕЛИЗМ – это внутриаллельное взаимодействие генов, при котором за развитие одного признака отвечает не одна аллель, а несколько, при этом кроме основных доминантного и рецессивного аллеля появляются промежуточные, которые по отношению к дом. ведут себя как рецесивные, а по отношению к рецессивным, как доминантные.

(например, у сиамских кошек, у кроликов:С – дикий тип, С/ - сиамские, С// - альбинос; группы крови у человека)

Множественными называют аллели, которые представлены в популяции более, чем двумя аллельными состояниями, возникающими в результате многократного мутирования одного и того же локуса хромосомы.

Законы Менделя при дигибридном скрещивании.

Дигибридное скрещивание – это скрещивание особей, отличающихся по двум парам контрастных альтернативных признаков.

Комбинативная изменчивость – это появление новых комбинаций генов и признаков в результате скрещивания. Причины:

Коньюгация и кроссинговер, случайные расхождения хромосом и хроматид в анафазы мейоза, случайное слияние гамет при оплодотворении.

III закон Менделя (закон свободного независимого комбинирования признаков):

Отдельные пары признаков при дигибридном скрещивании ведут себя независимо, свободно сочетаясь друг с другом во всех возможных комбинациях.


ВЗАИМОДЕЙСТВИЕ НЕАЛЛЕЛЬНЫХ ГЕНОВ:

Неаллельное взаимодействие – это взаимодействие генов разных аллельных пар.

КОМПЛЕМЕНТАРНОСТЬ – это такой тип взаимодействия неаллельных генов, при котором они взаимно дополняют друг друга и при совместном нахождении в генотипе (А-В-) обуславливают развитие качественно нового признака по сравнению с действием каждого гена в отдельности (А-вв, ааВ-).

Комплементарные гены – это взаимодополняющие гены.

ЭПИСТАЗ -это тип взаимодействия неаллельных генов, при котором один неаллельный ген подавляет действие другого неаллельного гена.

Ген, который подавляет называется эпистатическим, геном-супрессором или ингибитором.

Ген, подавляемый, называется гипостатическим.

ПОЛИМЕРИЯ – это обусловленность развития определенного, обычно количественного признака, несколькими эквивалентными полимерными генами.

ПОЛИМЕРИЯ:

Некумулятивная

Когда неважно количество доминантных генов в генотипе, а важно их присутствие)

Кумулятивная (суммирующая)

Когда число доминантных аллелей влияет на степень выраженности данного признака, и чем больше доминантных аллелей, тем ярче выражен признак

Например, окраска кожи у человека, рост, масса тела, величина артериального давления.

Доминантные гены, одинаково влияющие на развитие одного признака, называются генами с однозначными действиями (А1, А2, А3..), а признаки называются полимерными.

Пороговый эффект- это минимальное количество полимерных генов, при которых проявляется признак.

СЦЕПЛЕННОЕ НАСЛЕДОВАНИЕ ГЕНОВ.

Группа сцепления – это совокупность генов, локализованных в одной хромосоме и наследующихся, как правило, совместно.

Полное сцепление – это явление, при котором группа сцепления не нарушается кроссинговером и гены, локализованные в одной хромосоме передаются совместно.

У потомства проявляются только родительские признаки.

Неполное сцепление – это явление, при котором группа сцепления нарушается кроссинговером. Гены, локализованные в одной хромосоме не всегда будут передаваться вместе. И в потомстве появляются новые сочетания признаков, наряду с известными родительскими.

В этой статье кратко и понятно описываются три закона Менделя. Эти законы - основа всей генетики, создав их, Мендель фактически создал эту науку.

Здесь Вы найдёте определение каждого закона и узнаете немного нового о генетике и биологии в целом.

Перед началом чтения статьи стоит понимать, что генотип - это совокупность генов организма, а фенотип - его внешних признаков.

Кто такой Мендель и чем он занимался

Грегор Иоганн Мендель - известный австрийский биолог, родившийся в 1822 году в деревне Гинчице. Хорошо учился, но у семьи его были материальные трудности. Чтобы разобраться с ними, Иоганн Мендель в 1943 году решил стать монахом чешского монастыря в городе Брно и получил там имя Грегор.

Грегор Иоганн Мендель (1822 — 1884)

Позже изучал биологию в Венском университете, а затем решил преподавать физику и природоведение в Брно. Тогда же учёный заинтересовался ботаникой. Он проводил опыты по скрещиванию гороха. На основе результатов этих опытов учёный вывел три закона наследственности, которым и посвящена эта статья.

Опубликованные в работе «Опыты с гибридами растений» в 1866 году, эти законы не получили широкой огласки, и вскоре работа была забыта. О ней вспомнили лишь после смерти Менделя в 1884 году. Вам уже известно, сколько законов он вывел. Теперь пора перейти к рассмотрению каждого.

Первый закон Менделя - закон единообразия гибридов первого поколения

Рассмотрим опыт, проведённый Менделем. Он взял два вида гороха. Эти виды различали цветом цветков. У одного они были пурпурные, а у другого - белые.

Скрестив их, учёный увидел, что у всего потомства цветки пурпурные. А горох жёлтого и зелёного цвета дал полностью жёлтое потомство. Биолог повторял эксперимент ещё много раз, проверяя наследование разных признаков, однако результат всегда был один.

На основе этих опытов учёный вывел свой первый закон, вот его формулировка: все гибриды в первом поколении всегда наследуют лишь один признак от родителей.

Обозначим ген, отвечающий за пурпурные цветки, как A, а за белые- a. Генотип одного родителя - AA (пурпурные), а второго - aa (белые). От первого родителя будет унаследован ген A, а от второго - a. Значит, генотип потомства всегда будет Aa. Ген, обозначенный заглавной буквой, называется доминантным, а строчной - рецессивным.

Если в генотипе организма содержатся два доминантных или два рецессивных гена, то его называют гомозиготным, а организм, содержащий разные гены - гетерозиготным. Если организм гетерозиготен, то рецессивный ген, обозначаемый прописной буквой, подавляется более сильным доминантным, в результате проявляется признак, за который отвечает доминантный. Значит, горох с генотипом Aa будет обладать пурпурными цветками.

Скрещивание двух гетерозиготных организмов с разными признаками - это моногибридное скрещивание.

Кодоминирование и неполное доминирование

Бывает такое, что доминантный ген не может подавить рецессивный. И тогда в организме проявляются оба родительских признака.

Такое явление можно наблюдать на примере камелии. Если в генотипе этого растения один ген отвечает за красные лепестки, а другой - за белые, то половина лепестков камелии станут красными, а остальные - белыми.

Такое явление называют кодоминированием.

Неполное доминирование - похожее явление, при котором появляется третий признак, нечто среднее между тем, что было у родителей. Например, цветок ночная красавица с генотипом, содержащим и белые, и красные лепестки, окрашивается в розовый.

Второй закон Менделя - закон расщепления

Итак, мы помним, что при скрещивании двух гомозиготных организмов всё потомство примет лишь один признак. Но что, если взять из этого потомства два гетерозиготных организма и скрестить их? Будет ли потомство единообразным?

Вернёмся к гороху. Каждый родитель с равной вероятностью передаст либо ген A, либо ген a. Тогда потомство разделится следующим образом:

  • AA - пурпурные цветки (25%);
  • aa - белые цветки (25%);
  • Aa - пурпурные цветки (50%).

Видно, что организмов с пурпурными цветками в три раза больше. Это явление расщепления. В этом и заключается второй закон Грегора Менделя: при скрещивании гетерозиготных организмов потомство расщепляется в соотношении 3:1 по фенотипу и 1:2:1 по генотипу.

Впрочем, существуют так называемые летальные гены. При их наличии происходит отклонение от второго закона. Например, потомство жёлтых мышей расщепляется в соотношении 2:1.

То же происходит и с лисицами платинового цвета. Дело в том, что если в генотипе этих (и некоторых других) организмов оба гена доминантные, то они просто погибают. В результате доминантный ген может проявляться только если организм гетерозиотен.

Закон чистоты гамет и его цитологическое обоснование

Возьмём жёлтый горох и зелёный горох, ген жёлтого цвета - доминантный, а зелёного - рецессивный. В гибриде будут содержаться оба этих гена (хотя мы увидим лишь проявление доминантного).

Известно, что от родителя к потомству гены переносятся с помощью гамет. Гамета - это половая клетка. В генотипе гибрида имеется два гена, выходит, в каждой гамете - а их две - находилось по одному гену. Слившись, они образовали генотип гибрида.

Если во втором поколении проявился рецессивный признак, характерный одному из родительских организмов, значит, выполнялись следующие условия:

  • наследственные факторы гибридов не изменялись;
  • каждая гамета содержала в себе один ген.

Второй пункт - закон чистоты гамет. Конечно, гена не два, их больше. Существует понятие аллельных генов. Они отвечают за один и тот же признак. Зная это понятие, можно сформулировать закон так: в гамету проникает по одному, случайно выбранному, гену из аллели.

Цитологическая основа данного правила: клетки, в которых находятся содержащие пары аллелей хромосомы со всей генетической информацией, делятся и образуют клетки, в которых есть лишь по одной аллели - гаплоидные клетки. В данном случае это гаметы.

Третий закон Менделя - закон независимого наследования

Выполнение третьего закона возможно при дигибридном скрещивании, когда исследуется не один признак, а несколько. В случае с горохом это, например, цвет и гладкость семян.

Гены, отвечающие за цвет семян, обозначим как A (жёлтый) и a (зелёный); за гладкость - B (гладкие) и b (морщинистые). Попробуем провести дигибридное скрещивание организмов с разными признаками.

Первый закон не нарушается при таком скрещивании, то есть гибриды будут одинаковы и по генотипу (AaBb), и по фенотипу (с жёлтыми гладкими семенами).

Каким же будет расщепление во втором поколении? Чтобы это узнать, необходимо выяснить, какие гаметы могут выделить родительские организмы. Очевидно, это AB, Ab, aB и ab. После этого строится схема, называемая решёткой Пиннета.

По горизонтали перечисляются все гаметы, которые может выделить один организм, а по вертикали - другой. Внутри решётки записывается генотип организма, который появился бы при данных гаметах.

AB Ab aB ab
AB AABB AABb AaBB AaBb
Ab AABb AAbb AaBb Aabb
aB AaBB AaBb aaBB aaBb
ab AaBb Aabb aaBb aabb

Если изучить таблицу, можно прийти к выводу, что расщепление гибридов второго поколения по фенотипу происходит в соотношении 9:3:3:1. Это понял и Мендель, проведя несколько экспериментов.

Помимо этого он также пришёл к выводу, что то, какой из генов одной аллели (Aa) попадёт в гамету, не зависит от другой аллели (Bb), то есть существует только независимое наследование признаков. Это и есть его третий закон, называемый законом независимого наследования.

Заключение

Три закона Менделя - основные генетические законы. Благодаря тому, что один человек решил поэкспериментировать с горохом, биология получила новый раздел - генетику.

С её помощью учёные со всего мира научились множеству вещей, начиная предотвращением болезней, заканчивая генной инженерией. Генетика - это один из самых интересных и перспективных разделов биологии.

Грегор Мендель в XIX веке, проводя исследования на горохе посевном, выявил три основные закономерности наследования признаков, которые носят название трех законов Менделя. Первые два закона касаются моногибридного скрещивания (когда берут родительские формы, отличающиеся только по одному признаку), третий закон был выявлен при дигибридном скрещивании (родительские формы исследуются по двум разным признакам).

Первый закон Менделя. Закон единообразия гибридов первого поколения

Мендель взял для скрещивания растения гороха, отличающиеся по одному признаку (например, по окраске семян). Одни имели желтые семена, другие - зеленые. После перекрестного опыления получаются гибриды первого поколения (F 1). Все они имели желтый цвет семян, т. е. были единообразны. Фенотипический признак, определяющий зеленый цвет семян, исчез.

Второй закон Менделя. Закон расщепления

Мендель посадил гибриды первого поколения гороха (которые все были желтыми) и позволил им самоопыляться. В итоге были получены семена, представляющие собой гибриды второго поколения (F 2). Среди них уже встречались не только желтые, но и зеленые семена, т. е. произошло расщепление. При этом отношение желтых к зеленым семенам было 3: 1.

Появление зеленых семян во втором поколении доказывало то, что этот признак не исчезал или растворялся у гибридов первого поколения, а существовал в дискретном состоянии, но просто был подавлен. В науку были введены понятия о доминантном и рецессивном аллеле гена (Мендель называл их по-другому). Доминантный аллель подавляет рецессивный.

У чистой линии желтого гороха два доминантных аллеля - AA. У чистой линии зеленого гороха два рецессивных аллеля - aa. При мейозе в каждую гамету попадает только один аллель. Таким образом, горох с желтыми семенами образует только гаметы, содержащие аллель A. Горох с зелеными семенами образует гаметы, содержащие аллель a. При скрещивании они дают гибриды Aa (первое поколение). Поскольку доминантный аллель в данном случае полностью подавляет рецессивный, то и наблюдался желтый цвет семян у всех гибридов первого поколения.

Гибриды первого поколения уже дают гаметы A и a. При самоопылении, случайно комбинируясь между собой, они образуют генотипы AA, Aa, aa. Причем гетерозиготный генотип Aa будет встречаться в два раза чаще (так как Aa и aA), чем каждый гомозиготный (AA и aa). Таким образом получаем 1AA: 2Aa: 1aa. Поскольку Aa дает желтый цвет семян как и AA, то выходит, что на 3 желтых приходится 1 зеленый.

Третий закон Менделя. Закон независимого наследования разных признаков

Мендель провел дигибридное скрещивание, т. е. взял для скрещивания растения гороха, отличающиеся по двум признакам (например, по цвету и морщинистости семян). Одна чистая линия гороха имела желтые и гладкие семена, а вторая - зеленые и морщинистые. Все их гибриды первого поколения имели желтые и гладкие семена.

Во втором поколении ожидаемо произошло расщепление (у части семян проявился зеленый цвет и морщинистость). Однако при этом наблюдались растения не только с желтыми гладкими и зелеными морщинистыми семенами, но и с желтыми морщинистыми, а также зелеными гладкими. Другими словами, произошла перекомбинация признаков, говорящая о том, что наследование цвета и формы семян происходит независимо друг от друга.

Действительно, если гены цвета семян находится в одной паре гомологичных хромосом, а гены, определяющие форму, - в другой, то при мейозе они могут независимо друг от друга комбинироваться. В результате гаметы могут содержать как аллели желтого цвета и гладкой формы (AB), так и желтого цвета и морщинистой формы (Ab), а также зеленой гладкой (aB) и зеленой морщинистой (ab). При комбинации гамет между собой с разной вероятностью образуется девять типов гибридов второго поколения: AABB, AABb, AaBB, AaBb, AAbb, Aabb, aaBB, aaBb, aabb. При этом по фенотипу будет наблюдаться расщепление на четыре типа в отношении 9 (желтых гладких) : 3 (желтых морщинистых) : 3 (зеленых гладких) : 1 (зеленых морщинистых). Для наглядности и подробного анализа строят решетку Пеннета.

Получив единообразные гибриды первого поколения от скрещивания двух разных чистых линий гороха, различающихся только по одному признаку, Мендель продолжил опыт уже с семенами F 1 . Он позволил гибридам первого поколения гороха самоопыляться, в результате получил гибриды второго поколения – F 2 . Оказалось, что у части растений второго поколения появлялся признак, отсутствующий у F 1 , но присутствующий у одного из родителей. Следовательно, он присутствовал в F 1 в скрытом виде. Мендель назвал этот признак рецессивным.

Статистический анализ показал, что количество растений с доминантным признаком относится к количеству растений с рецессивным признаком как 3: 1.

Второй закон Менделя называется законом расщепления , так как единообразные гибриды первого поколения дают разное потомство (т. е. как бы расщепляются).

Объясняется второй закон Менделя следующим образом. Гибриды первого поколения от скрещивания двух чистых линий являются гетерозиготами (Aa). Они образуют два типа гамет: A и a. С равной вероятностью могут образоваться следующие зиготы: AA, Aa, aA, aa. Действительно, допустим растение образовало 1000 яйцеклеток, 500 из которых несут ген A, 500 - ген a. Также образовалось 500 спермиев A и 500 спермиев a. По теории вероятности приблизительно:

    250 яйцеклеток A будут оплодотворены 250 спермиями A, получено 250 зигот AA;

    250 яйцеклеток A будут оплодотворены 250 спермиями a, получено 250 зигот Aa;

    250 яйцеклеток a будут оплодотворены 250 спермиями A, получено 250 зигот aA;

    250 яйцеклеток a будут оплодотворены 250 спермиями a, получено 250 зигот aa.

Поскольку генотипы Aa и aA - это одно и то же, то получаем следующее распределение второго поколения по генотипу : 250AA: 500Aa: 250aa. После сокращения получаем соотношение AA: 2Aa: aa, или 1: 2: 1 .

Поскольку при полном доминировании генотипы AA и Aa проявляются фенотипически одинаково, то расщепление по фенотипу будет 3: 1 . Это и наблюдал Мендель: ¼ часть растений во втором поколении оказалась с рецессивным признаком (например, зелеными семенами).

Ниже на схеме (представленной в виде решетки Пеннета) изображено скрещивание между собой (или самоопыление) гибридов первого поколения (Bb), которые были получены ранее в результате скрещивания чистых линий с белыми (bb) и розовыми (BB) цветками. Гибриды F 1 производят гаметы B и b. Встречаясь в разных комбинациях, они образуют три разновидности генотипа F 2 и две разновидности фенотипа F 2 .

Второй закон Менделя является следствием закона чистоты гамет : в гамету попадает только один аллель гена родителя. Другими словами, гамета чиста от другого аллеля. До открытия и изучения мейоза данный закон был гипотезой.

Мендель сформулировал гипотезу чистоты гамет, опираясь на результаты своих исследований, так как расщепление гибридов во втором поколении могло наблюдаться лишь в том случае, если «наследственные факторы» сохранялись (хотя могли и не проявляться), не смешивались, и каждый родитель мог передавать каждому потомку только один (но любой) из них.

Закономерности наследования признаков при половом размножении были установлены Г. Менделем. Необходимо иметь четкое представление о генотипе и фенотипе, аллелях, гомо- и гетерозиготности, доминировании и его типах, типах скрещиваний, а также составлять схемы.

Моногибридным называется скрещивание, при котором родительские формы отличаются друг от друга по одной паре контрастных, альтернативных признаков.

Следовательно, при таком скрещивании прослеживаются закономерности наследования только двух вариантов признака, развитие которого обусловлено парой аллельных генов. Примерами моногибридного скрещивания, проведенного Г. Менделем, могут служить скрещивания гороха с такими хорошо заметными альтернативными признаками, как пурпурные и белые цветки, желтая и зеленая окраска незрелых плодов (бобов), гладкая и морщинистая поверхность семян, желтая и зеленая их окраска и др.

Единообразие гибридов первого поколения (первый закон Менделя).При скрещивании гороха с пурпурными (АА) и белыми (аа) цветками Мендель обнаружил, что у всех гибридных растений первого поколения (F 1) цветки оказались пурпурными (рис. 2).

Рисунок 2 Схема моногибридного скрещивания

При этом белая окраска цветка не проявлялась. При скрещивании растений, имеющих гладкую и морщинистую форму семян, у гибридов семена будут гладкими. Г. Мендель установил также, что все гибриды F 1 оказались единообразными (однородными) по каждому из семи исследуемых им признаков. Следовательно, у гибридов первого поколения из пары родительских альтернативных признаков проявляется только один, а признак другого родителя как бы исчезает.

Альтернативные признаки – это признаки взаимоисключающие, контрастные.

Явление преобладания у гибридов F 1 признаков одного из родителей Мендель назвал доминированием, а соответствующий признак – доминантным. Признаки, не проявляющиеся у гибридов F 1, он назвал рецессивными. Поскольку все гибриды первого поколения единообразны, это явление было названо первым законам Менделя, или законом единообразия гибридов первого поколения, а также правилом доминирования.

Сформулировать его можно следующим образом: при скрещивании двух организмов, относящихся к разным чистым линиям (двух гомозиготных организмов), отличающихся друг от друга по одной паре альтернативных признаков, все первое поколение гибридов окажется единообразным и будет нести признак одного из родителей.

Каждый ген имеет два состояния – «А» и «а», поэтому они составляют одну пару, а каждого из членов пары называют аллелем. Гены, расположенные в одних и тех же локусах (участках) гомологических хромосом и определяющие альтернативное развитие одного и того же признака, называются аллельными.

Например, пурпурная и белая окраска цветка гороха является доминантным и рецессивным признаками соответственно двум аллелям (А и а) одного гена. Благодаря наличию двух аллелей возможны два состояния организма: гомо- и гетерозиготные. Если организм содержит одинаковые аллели конкретного гена (АА или аа), то он называется гомозиготным по данному гену (или признаку), а если разные (Аа) – то гетерозиготным. Следовательно, аллель – это форма существования гена. Примером трехаллельного гена является ген, определяющий у человека систему группы крови АВО. Аллелей бывает и больше: для гена, контролирующего синтез гемоглобина человека, их известно много десятков.

Из гибридных семян гороха Мендель вырастил растения, которые подверг самоопылению, и образовавшиеся семена вновь высеял. В результате было получено второе поколение гибридов, или гибриды F 2 . Среди последних обнаружилось расщепление по каждой паре альтернативных признаков в соотношении примерно 3:1, т. е. три четверти растений имели доминантные признаки (пурпурные цветки, желтые семена, гладкие семена и т. д.) и одна четверть – рецессивные (белые цветки, зеленые семена, морщинистые семена и т. д.). Следовательно, рецессивный признак у гибрида F 1 не исчез, а только был подавлен и вновь проявился во втором поколении. Это обобщение позднее было названовторым законом Менделя, или законом расщепления.

Расщепление – это явление, при котором скрещивание гетерозиготных особей приводит к образованию потомства, часть которого несет доминантный признак, а часть – рецессивный.

Второй закон Менделя: при скрещивании двух потомков первого поколения между собой (двух гетерозиготных особей) во втором поколении наблюдается расщепление в определенном числовом соотношении: по фенотипу 3:1, по генотипу 1:2:1 (рис. 3).

Рисунок 3 – Схема расщепления признаков

при скрещивании гибридов F 1

Расщепление признаков в потомстве при скрещивании гетерозиготных особей Г. Мендель объяснил тем, что гаметы генетически чисты, то есть несут только один ген из аллельной пары. Закон чистоты гаметможно сформулировать следующим образом: при образовании половых клеток в каждую гамету попадают только один ген из аллельной пары.

Следует иметь в виду, что использование гибридологического метода для анализа наследования признаков на любых видах животных или растений предусматривает проведение следующих скрещиваний:

    скрещивание родительских форм (Р), различающихся по одной (моногибридное скрещивание) или нескольким парам (полигибридное скрещивание) альтернативных признаков и получение гибридов первого поколения (F 1);

    скрещивание гибридов F 1 между собой и получение гибридов второго поколения (F 2);

    математический анализ результатов скрещивания.

В дальнейшем Мендель перешел к изучению дигибридного скрещивания.

Дигибридное скрещивание – это скрещивание, в котором участвуют две пары аллелей (парные гены – аллельные и располагаются только в гомологичных хромосомах).

При дигибридном скрещивании Г. Мендель изучал наследование признаков, за которые отвечают гены, лежащие в разных парах гомологичных хромосом. В связи с этим каждая гамета должна содержать по одному гену из каждой аллельной пары.

Гибриды, гетерозиготные по двум генам, называют дигетерозиготными, а в случае отличия их по трем и многим генам – три- и полигетерозиготными соответственно.

Более сложные схемы дигибридных скрещиваний, запись генотипов и фенотипов F 2 ведется с использованием решетки Пеннета. Рассмотрим пример такого скрещивания. Для скрещивания были взяты две исходные гомозиготные родительские формы: первая форма имела желтые и гладкие семена; вторая форма обладала зелеными и морщинистыми семенами (рис. 4).

Рисунок 4 – Дигибридное скрещивание растений гороха,

различающихся по форме и окраске семян

Желтый цвет и гладкие семена – доминантные признаки; зеленый цвет и морщинистые семена – рецессивные признаки. Гибриды первого поколения – скрещивались между собой. Во втором поколении наблюдалось расщепление по фенотипу в соотношении 9:3:3:1, или (3+1) 2 , после самоопыления гибридов F 1 в соответствии с законом расщепления вновь появились морщинистые и зеленые семена.

Родительские растения в этом случае имеют генотипы ААВВ и aabb, а генотип гибридов F 1 – АаВb, т. е. является дигетерозиготным.

Таким образом, при скрещивании гетерозиготных особей, отличающихся по нескольким парам альтернативных признаков, в потомстве наблюдается расщепление по фенотипу в соотношении (3+1) п, где п – число пар альтернативных признаков.

Гены, определяющие развитие разных пар признаков, называются неаллельными.

Результаты дигибридного и полигибридного скрещивания зависят от того, располагаются гены, определяющие рассмотренные признаки, в одной или в разных хромосомах. Менделю попались признаки, гены которых находились в разных парах гомологичных хромосом гороха.

При мейозе гомологичные хромосомы разных пар комбинируются в гаметах случайным образом. Если в гамету попала отцовская хромосома первой пары, то с равной вероятностью в эту гамету может попасть как отцовская, так и материнская хромосома второй пары. Поэтому признаки, гены которых находятся в разных парах гомологичных хромосом, комбинируются независимо друг от друга. Впоследствии выяснилось, что из исследованных Менделем семи пар признаков у гороха, у которого диплоидное число хромосом 2 n = 14, гены, отвечающие за одну из пар признаков, находились в одной и той же хромосоме. Однако, Мендель не обнаружил нарушения закона независимого наследования, так как сцепления между этими генами не наблюдалось из-за большого расстояния между ними).

На основе проведенных исследований Мендель вывел третий закон – закон независимого наследования признаков, или независимого комбинирования генов.

Каждая пара аллельных генов (и альтернативных признаков, контролируемых ими) наследуется независимо друг от друга.

Закон независимого комбинирования генов составляет основу комбинативной изменчивости, наблюдаемой при скрещивании у всех живых организмов. Отметим также, что в отличие от первого закона Менделя, который справедлив всегда, второй закон действителен только для генов, локализованных в разных парах гомологичных хромосом. Это обусловлено тем, что негомологичные хромосомы комбинируются в клетке независимо друг от друга, что было доказано не только при изучении характера наследования признаков, но и прямым цитологическим методом.

При изучении материала обратите внимание на случаи нарушений закономерных расщеплений по фенотипу, вызванных летальным действием отдельных генов.

Наследственность и изменчивость. Наследственность и изменчивость являются важнейшими свойствами, характерными для всех живых организмов.

Наследственную, или генотипическую, изменчивость подразделяют на комбинативную и мутационную.

Комбинативной называют изменчивость, в основе которой лежит образование рекомбинаций, т. е. таких комбинаций генов, которых не было у родителей.

В основе комбинативной изменчивости лежит половое размножение организмов, вследствие которого возникает огромное разнообразие генотипов. Практически неограниченными источниками генетической изменчивости служат три процесса:

    Независимое расхождение гомологичных хромосом в первом мейотическом делении. Именно независимое комбинирование хромосом при мейозе является основой третьего закона Г. Менделя. Появление зеленых гладких и желтых морщинистых семян гороха во втором поколении от скрещивания растений с желтыми гладкими и зелеными морщинистыми семенами – пример комбинативной изменчивости.

    Взаимный обмен участками гомологичных хромосом, или кроссинговер. Он создает новые группы сцепления, т. е. служит важным источником генетической рекомбинации аллелей. Рекомбинантные хромосомы, оказавшись в зиготе, способствуют появлению признаков, нетипичных для каждого из родителей.

    Случайное сочетание гамет при оплодотворении.

Эти источники комбинативной изменчивости действуют независимо и одновременно, обеспечивая при этом постоянную «перетасовку» генов, что приводит к появлению организмов с другими генотипом и фенотипом (сами гены при этом не изменяются). Однако новые комбинации генов довольно легко распадаются при передаче из поколения в поколение.

Пример комбинативной изменчивости. У цветка ночная красавица есть ген красного цвета лепестков А и ген белого цвета а. Организм Аа имеет розовый цвет лепестков. Таким образом, у ночной красавицы нет гена розового цвета, розовый цвет возникает при сочетании (комбинации) красного и белого гена.

У человека есть наследственное заболевание серповидноклеточная анемия. АА – норма, аа – смерть, Аа – СКА. При СКА человек не может переносить повышенных физических нагрузок, при этом он не болеет малярией, т. е. возбудитель малярии малярийный плазмодий не может питаться неправильным гемоглобином. Такой признак полезен в экваториальном поясе; для него нет гена, он возникает при сочетании генов А и а.

Таким образом, наследственная изменчивость усиливается благодаря комбинативной изменчивости. Возникнув, отдельные мутации оказываются в соседстве с другими мутациями, входят в состав новых генотипов, т. е. возникает множество сочетаний аллелей. Любая особь генетически уникальна (за исключением однояйцевых близнецов и особей, возникших за счет бесполого размножения клона, имеющего родоначальником одну клетку). Так, если допустить, что в каждой паре гомологичных хромосом имеется только одна пара аллельных генов, то для человека, у которого гаплоидный набор хромосом равен 23, число возможных генотипов составит 3 в 23 степени. Такое огромное количество генотипов в 20 раз превышает численность всех людей на Земле. Однако в действительности гомологичные хромосомы различаются по нескольким генам и в расчете не учтено явление кроссинговера. Поэтому количество возможных генотипов выражается астрономическим числом, и можно с уверенностью утверждать, что возникновение двух одинаковых людей практически невероятно (за исключением однояйцовых близнецов, возникших из одной оплодотворенной яйцеклетки). Отсюда, в частности, следует возможность достоверного определения личности по остаткам живых тканей, подтверждения или исключения отцовства.

Таким образом, обмен генами вследствие перекреста хромосом в первом делении мейоза, независимая и случайная перекомбинация хромосом в мейозе и случайность слияния гамет в половом процессе – три фактора, обеспечивающие существование комбинативной изменчивости. Мутационная изменчивость самого генотипа.

Мутации – это внезапные наследуемые изменения генетического материала, приводящие к изменению тех или иных признаков организма.

Основные положения мутационной теории разработаны ученым Г. Де Фризом в 1901 1903 гг. и сводятся к следующему:

Мутации возникают внезапно, скачкообразно, как дискретные изменения признаков;

Отличие от ненаследственных изменений мутации представляют собой качественные изменения, которые передаются из поколения в поколение;

Мутации проявляются по-разному и могут быть как полезными, так и вредными, как доминантными, так и рецессивными;

Вероятность обнаружения мутаций зависит от числа исследованных особей;

Сходные мутации могут возникать повторно;

Мутации ненаправленны (спонтанны), т. е. мутировать может любой участок хромосомы, вызывая изменения как незначительных, так и жизненно важных признаков.

Почти любое изменение в структуре или количестве хромосом, при котором клетка сохраняет способность к самовоспроизведению, обусловливает наследственное изменение признаков организма.

По характеру изменения генома, т. е. совокупности генов, заключенных в гаплоидном наборе хромосом, различают генные, хромосомные и геномные мутации.

Генные, или точковые, мутации – результат изменения нуклеотидной последовательности в молекуле ДНК в пределах одного гена.

Такое изменение в гене воспроизводится при транскрипции в структуре и-РНК; оно приводит к изменению последовательности аминокислот в полипептидной цепи, образующейся при трансляции на рибосомах. В результате синтезируется другой белок, что ведет к изменению соответствующего признака организма. Это наиболее распространенный вид мутаций и важнейший источник наследственной изменчивости организмов.

Хромосомные мутации (перестройки, или аберрации) – это изменения в структуре хромосом, которые можно выявить и изучить под световым микроскопом.

Известны перестройки разных типов:

Нехватка потеря концевых участков хромосомы;

Делеция выпадение участка хромосомы в средней ее части;

Дупликация двух- или многократное повторение генов, локализованных в определенном участке хромосомы;

Инверсия поворот участка хромосомы на 180°, в результате чего в этом участке гены расположены в последовательности, обратной по сравнению с обычной;

Транслокация изменение положения какого-либо участка хромосомы в хромосомном наборе. К наиболее распространенному типу транслокаций относятся реципрокные, при которых происходит обмен участками между двумя негомологичными хромосомами. Участок хромосомы может изменить свое положение и без реципрокного обмена, оставаясь в той же хромосоме или включаясь в какую-то другую.

Геномные мутации – изменение числа хромосом в геноме клеток организма. Это явление происходит в двух направлениях: в сторону увеличения числа целых гаплоидных наборов (полиплоидия) и в сторону потери или включения отдельных хромосом (анеуплоидия).

Полиплоидия кратное увеличение гаплоидного набора хромосом. Клетки с разным числом гаплоидных наборов хромосом называются триплоидными (3 n), тетраплоидными (4 n), гексаплоидными (6 n), октаплоидными (8 n) и т. д. Чаще всего полиплоиды образуются при нарушении порядка расхождения хромосом к полюсам клетки при мейозе или митозе. Полиплоидия приводит к изменению признаков организма и поэтому является важным источником изменчивости в эволюции и селекции, особенно у растений. Это связано с тем, что у растительных организмов весьма широко распространены гермафродитизм (самоопыление), апомиксис (партеногенез) и вегетативное размножение. Поэтому около трети видов растений, распространенных на нашей планете, полиплоиды, а в резко континентальных условиях высокогорного Памира произрастает до 85 % полиплоидов. Почти все культурные растения тоже полиплоиды, у которых, в отличие от их диких сородичей, более крупные цветки, плоды и семена, а в запасающих органах (стебель, клубни) накапливается больше питательных веществ. Полиплоиды легче приспосабливаются к неблагоприятным условиям жизни, легче переносят низкие температуры и засуху. Именно поэтому они широко распространены в северных и высокогорных районах.

© 2024 pechivrn.ru -- Строительный портал - Pechivrn