Сигнализатор повышенной влажности воздуха. Датчики влажности. Виды и работа. Применение и особенности Исполнительные устройства автоматизации полива

Главная / Юридические лица

Аварии с домашним водопроводом часто происходят не внезапно. Сначала начнет подтекать, потом капать, а потом может и прорвать. А еще могут и соседи сверху начать заливать. И лучше узнать об этом пораньше, а не когда тебя разбудит дождь с потолка. Для собственного спокойствия решил я подстраховаться и сделать звуковой сигнализатор влажности. Теперь такая игрушка стоит у меня у каждой батареи, под каждой раковиной и других водоопасных местах. Этот бдительный страж предупредит об опасности воем милицейской сирены. Так же приборчик можно использовать для сигнализации о завышенной влажности в помещении, или образовании конденсата.

Технические характеристики:
Напряжение питания - 12 вольт.
Ток потребления в покое - нет.
Ток потребления в режиме работы - 20 мА.

Детали:
D1- К561ЛА7- 1 шт. Аналог- CD4011A.
T1, T2- КП505- 2 шт. Любой n-канальный МОП транзистор с напряжением затвора не выше 3 вольт.
С1- 0,1 мкф. Керамика.
С2, С3- 22 нф. Керамика.
R2- 1 ком- 1 шт. Резистор 0125W.
R4- 3,3 ком- 1 шт. Резистор 0125W.
R6- 47 ком- 1 шт. Резистор 0125W.
R1- 68 ком- 1 шт. Резистор 0125W.
R3- 100 ком- 1 шт. Резистор 0125W.
R5- 220 ком- 1 шт. Резистор 0125W.
ЗП-18- 1 шт. Любой пьезокерамический излучатель.
S1- Любой выключатель.
Bat 12 V- Пальчиковая батарейка от брелка сигнализации.

Описание работы:
При повышении влажности сопротивление датчика уменьшается, открывается транзистор Т2. Включаются оба генератора микросхемы D1. Генератор на элементах D1-3 и D1-4 работает на частоте, примерно 1 герц, генератор на элементах D1-1 и D1-2 на частоте вашего излучателя (нужно подстроить для максимальной громкости, в моем случае порядка трех килогерц). Транзистор Т1 с частотой 1 герц подключает и отключает емкость С3 подключенную параллельно емкости С2, из-за этого меняется тональность второго генератора и получается имитация звука сирены.

Настройка:
При правильной сборке устройство в настройке не нуждается.
Для снижения чувствительности прибора нужно уменьшить резистор R5, для повышения чувствительности увеличить.
При данных элементах сигнализатор срабатывает от касания рукой.
Для увеличения громкости можно подобрать частоту с помощью С2 и С3 под ваш резонатор.
В роли датчика влажности можно использовать любые два проводника расположенные близко друг к другу. Я нарезал на фольгированном текстолите несколько рядом лежащих дорожек.

Деталей и соединений не много, потэому печатную плату решил не делать.
По цене трудно что-то сказать, все детали были под рукой. Самый дорогой элемент это батарейка - 30 рублей.

Многие современные импортные стиральные машины обору­дованы сигнализаторами подтекания воды из них. Устаревшие или более дешевые модели стиральных машин такой сервис­ной функции не имеют. К сожалению, некоторые их владель­цы уже на собственном опыте знают, что такое "потоп" и "сколько это будет стоить". Чтобы не испытать это чувство, можно заранее воспользоваться материалами статьи.

Схема простейшего сигнализа­тора повышения влажности приве­дена на рис. 1. Она контролирует состояние датчика влажности (сенсо­ра), который подключается к контак­там К1 "SENSOR". Конструкция дат­чика может быть самой различной.

Все зависит от возможностей его изготовителя. В простейшем слу­чае достаточно воспользоваться "печатной" платой, на которой име­ются два проводника, расположен­ные на удалении 0,5...1,5 мм друг от друга. Для повышения эффек­тивности работы такого датчика при минимальных его размерах можно сделать проводники в виде спирали. Это позволит увеличить "зону взаимодействия" проводни­ков без значительного увеличения габаритов датчика.

На микросхеме интегрального таймера IC1 типа NE555 выполнен моностабильный генератор им­пульсов. Собственная частота ге­нератора определяется номинала­ми резисторов R1, R2 и конденса­тора С1.

К выходу схемы (КЗ "OUT- REPRO") подключается любой электромагнитный или динамичес­кий излучатель. Для исключения перегрузки микросхемы по выходу необходимо, чтобы его сопротивле­ние при напряжении питания мик­росхемы 9 В было более 50 Ом. Можно воспользоваться и малогаба­ритным пьезоизлучателем. При этом его надо будет зашунтировать рези­стором сопротивлением 2...20 кОм. В качестве конденсатора С2 при этом достаточно будет использовать неполярный керамический конден­сатор емкостью до 0,22...0,68 мкФ или вообще заменить конденсатор С2 ... перемычкой. Смелее экспе­риментируйте!

При сухом датчике влажности транзистор Т1 будет в непроводя­щем состоянии, напряжение пита­ния на микросхему IC1 не подает­ся и она обесточена. Если влаж­ность в месте расположения датчи­ка "SENSOR" повысится, то тран­зистор Т1 получит смещение базо­вого перехода и отопрется. Микро­схема IC1 получит питание и начнет генерировать электрические сигна­лы звукового диапазона частот. "Зазвучит" излучатель, сигнализи­руя о протечке воды в месте уста­новки датчика.

Для повышения чувствительно­сти работы схемы целесообразно в качестве Т1 использовать тран­зисторы с большим коэффициен­том усиления, например, ВС549С или отечественные КТ3102Е.

Схема рис. 1 очень простая и типовая. Казалось бы, что в ней еще усовершенствовать? Действи­тельно, начинающие радиолюбите­ли могут повторять ее. Собствен­но, на них она и была рассчитана. Более любознательные читатели могут задаться вопросом рацио­нальности предлагаемого в схеме рис. 1 способа включения/вык­лючения генерации микросхемы электронного таймера серии 555. Из алгоритма работы этих микро­схем известно, что в зависимо­сти от напряжения на выводе 4 тай­мер может находиться в рабочем или пассивном (заторможенном) состоянии. Так, если на вывод 4 по­дано напряжение менее 0,4 В, то на выходе таймера (независимо от сигналов на других его входах) ус­танавливается напряжение низко­го уровня. Этот режим называется пассивным.

Если напряжение на выводе 4 превышает 1 В, то цепь блокиров­ки работы таймера автоматически выключается и не влияет на после­дующую работу таймера. Это ак­тивный режим. Микросхема может работать как моностабильный ге­нератор в данном случае. Ток уп­равления микросхемой по выводу 4 очень мал и не превышает 0,2 мА. Это позволяет изменить схему уп­равления ее работой. Дело в том, что с повышением влажности в области датчика "SENSOR" сопро­тивление самого датчика меняет­ся не скачкообразно, а постепенно. Примерно так же постепенно будет уменьшаться и сопротивление пе­рехода эмиттер-коллектор транзи­стора Т1. Возрастает напряжение питания микросхемы IC1. Пример­но при 3...4 В она начинает гене­рировать, но громкость звука в громкоговорителе "REPRO" будет очень слабой. По мере повышения влажности в зоне датчика гром­кость возрастает.

Целесообразнее постараться придать сигнализатору влажности релейные свойства - сигнал трево­ги должен быть достаточно силь­ным уже при минимально допусти­мом уровне контролируемого пара­метра (влажности). Для этого, ве­роятно, достаточно вывод 8 (+Vcc) микросхемы IC1 и резистор R1 под­ключить непосредственно к выхо­ду выключателя питания S1. Вывод 4 этой микросхемы соединяют с эмиттером транзистора Т1 и допол­нительным резистором R3. Второй конец этого резистора должен быть соединен с минусом питания мик­росхемы - рис. 2.

Как и ранее, пока датчик влажности сух, транзистор Т1 находится в непроводящем со­стоянии. Тока эмиттера транзисто­ра и падения напряжения на рези­сторе R3 нет. Таймер "заторможен" по выводу 4.

При повышении влажности транзистор Т1 отпирается, ток эмиттера(коллектора)создает па­дение напряжения на резисторе R3. Как только на этом резисторе будет более 0,4...1 В, таймер раз­блокируется и начинает генериро­вать импульсы. Релейный режим управления работой генератора НЧ при линейном изменении сопро­тивления датчика влажности дос­тигнут.

В заключение хотелось бы выс­казать предположения в выборе типа транзистора Т1 и номинала резистора R3. Поскольку ток тай­мера 555 по выводу 4 может быть очень мал (менее 0,5 мА), то зада­димся током коллектора этого транзистора, например, 2 мА. Зна­чит, при напряжении питания схе­мы 9 В сопротивление R3 может быть 4,3 кОм.

Получение столь небольшого тока через транзистор Т1, вероят­но, возможно и при не столь уж и большом коэффициенте его усиле­ния. А это допускает применение в качестве Т1 любых типов мало­мощных транзисторов без их под­бора. Возможно, целесообразно выполнить эмиттерную нагрузку транзистора Т1 в виде цепочки из двух резисторов (R3 и R4) - рис. 3. Это дополнительно облегчит на­стройку схемы.

Литература:
1. Poplachove cidlo vlhoctf // Amaterske RADIO. 2009. №12. S.3.
2. B.H. Вениаминов, O.H. Лебе­дев, А.И. Мирошниченко. Микро­схемы и их применение // М.: Изда­тельство "Радио и связь". 1989. С.81 -82.

Большая влажность в ванной комнате является основной причиной появления в помещении плесени и грибка. Чтобы этого не происходило, вместо вентиляционного окна решетки устанавливают вентилятор.

И оптимальным вариантом такого изделия для воздухообмена влаги в ванной является вентилятор со встроенным датчиком влажности для вентиляции. Еще такой прибор называют гигрометр. Датчик влажности воздуха для управления вентиляцией совместно с таймером создают работу изделия автоматизированной. Помимо этого, есть ряд специализированных устройств, которые производят контроль за влажностью воздуха: это различные канальные преобразователи, гигростаты, те-же гигрометры и многое другое. Все разнообразие приборов можно увидеть в любом интернет-магазине, например на вентиляция.ком

Разновидности и особенности гигрометра

Гигростат приборы различаются между собой однолинейными и двух линейными схемами. Всякий контур содержит в себе реле, управляющее изделием. А гигрометр, имеющий два контура, разумеется, управляет несколькими устройствами.

В результате регулируется циркуляция воздуха в комнате. Перед тем как установить вентилятор с датчиком влажности, нужно сознавать, что эти изделия должны соответствовать некоторым условиям.

Основное для вытяжки – точность срабатывания гигрометра. А также изделие должно быть нейтральным к конденсату. Гигростаты подразделяют на емкостные, резистивные, теплопроводящие (термостатные) гигрометры.

Датчики емкостные

Принцип работы этого устройства заключается в изменении емкости конденсатора при повышенной влажности воздуха в помещении.

Резистивные приборы

Такие гигрометры основаны на изменении влажности в среде гигроскопа. Здесь элементом выступают подложки и полимеры.

В классическом варианте резистивный гигрометр температуры и конденсата состоит из подложки, с разложенными двумя электродами при использовании фоторезистора.

Затем ее накрывают токопроводящим полимерным элементом. Время включения вентиляции составляет от 15 до 35 секунд, что допустимо для ванной комнаты.

Теплопроводящие гигрометры

Такая разновидность изделий отличается по принципу действия от упомянутых гигрометров. Принцип работы у таких изделий заключается в мостовой схеме подключенных между собой термисторов.

Напряжение в конце схемы пропорционально содержанию влаги. А из-за того, что один резистор изолирован, а другой открытый, ток в них проходит за разное время.

Теплоотдача закрытого термистора больше, чем открытого, а это достигается за счет использования изолятора из сухого азота. Поскольку у термисторов разная температура, соответственно, у них соответствующее сопротивление. Разница этого показателя и характеризует сырость воздуха в помещении.

Дополнительная функциональность вентиляторов

На сегодняшний день разработаны современные вентиляторы VENTS iFan системы Electrolux c применением передовых технологий в отрасли вентиляционной продукции. Интегрированные схемы и автоматика с пульта дистанционного управления разрешают поставить выборочные настройки влажности:

  • Включение гигрометра при движении. При таком режиме включается вентиляция в то время, когда человек совершает свои гигиенические процедуры в ванной;
  • Функция проветривания. Гигростат включается параллельно с включением света в ванной комнате, и вентиляция работает постоянно в малом режиме;
  • Таймер для ванной комнаты. Для понижения сырости допускается вентиляция после приема ванной в течение нескольких минут;
  • Обратный клапан. Клапан нужен для защиты изделия от посторонних частиц, пыли и неприятного запаха из вентиляционного канала;
  • Дополнительное освещение прибора;
  • Регулировка мощности;
  • Наличие часов на панели изделия.

Но конечно, основным встроенным элементом для этого прибора является гигрометр влажности. Конструктивно он часто выпускается производителями совместно с вентилятором, но может быть, и автономным.

Преимущества

Достоинства такого датчика очевидны:

  • Влажный воздух не застаивается в помещении, а сразу же выводится наружу;
  • Экономия электроэнергии. Гигрометр срабатывает только при достижении предельного содержания влажности;

Минус гигрометра – его шум во время работы вентилятора.

Особенности датчика влажности

Гигростат работает аналогично термостату, но главная цель при этом – включать и отключать вентиляцию в зависимости от количества влаги. Другими словами, изделие включается лишь при достижении в помещении влажности выше 40%.

Датчик представляет собой чувствительный элемент, реагирующий при предельной влаге в воздухе. Он действует на реле, которое замыкает электрическую цепь электродвигателя и вентиляция включается.

Прибор MP590 встроен в корпус устройства вместе с модулем управления. Чтобы вентилятор с датчиком влажности в ванной работал корректно, нужно его правильно настроить.

Сначала переводят управление реле в режим триггер. Затем путем корректировки по показаниям влаги на управленческом модуле создают настройку схемы вентиляции.

Чтобы убедиться в правильной работе прибора, включают горячий душ и дожидаются повышения влажности, например, до 40%. После этого закрывают кран с горячей водой в душе. Через какое-то время, после принудительной вентиляции воздуха, при понижении влаги, прибор отключается.

Установка прибора с датчиком влажности

Для оптимальной работы прибора и эффективной вентиляции воздуха в помещении, его нужно правильно подключить. Что необходимо знать при этом?

Перед монтажом прибора вместо решетки на вентиляционной системе, надо проверить тягу в канале вентиляции. Для этого нужно зажечь спичку и поднести ее к колодцу, если пламя интенсивно отклонится в сторону отверстия, то, значит, естественная вентиляция работает нормально.

При работе изделия для воздухообмена нужен постоянный приток свежего воздуха: для этого подойдет небольшая щель в двери 2-3 см, которая и обеспечит вентиляцию.

При выборе изделия по мощности нужно знать объем помещения и условное количество замены воздушной массы в ванной за единицу времени. Для ванной комнаты этот показатель составляет 3-8 раз.

Умножая, объем на этот параметр, мы получим характеристики мощности прибора. Если в подсчетах боитесь ошибиться, то нужно просто выбрать максимальную по мощности модель – и такой вентилятор гарантированно не создаст проблем с необходимой циркуляцией воздуха.

Нередко возникает необходимость приобретать датчик по измерению сырости отдельно, и потом подключить его к вентилятору. Такие гигрометры принято монтировать в помещении ванной на потолке либо возле канала и в таком случае они снабжены щупом для измерения сырости в шахте воздуховода.

В ванной комнате желательно устанавливать низковольтный вентилятор, так как влажный воздух является хорошим электропроводником. Иногда лучше объединить свет и датчик влаги в воздухе под одним выключателем, так будет обеспечено регулярная вентиляция по мере избыточной сырости в ванной комнате.

Достаточно придерживаться этих простых правил, чтобы была обеспечена надежная и долгосрочная работа вентилятора. А если применить в работе приборы с дополнительными функциями, в том числе вентилятор вытяжной с датчиком влажности, то это устройство будет не только полезное, но и очень необходимым прибором для ванной комнаты.

Согласитесь, покупка такого прибора – это редкое приобретение в жизни и лучше заиметь достойное изделие, чем затем сожалеть о покупке.


Самодельный, стабильный датчик влажности почвы для автоматической поливальной установки

Эта статья возникла в связи с постройкой автоматической поливальной машины для ухода за комнатными растениями. Думаю, что и сама поливальная машина может представлять интерес для самодельщика, но сейчас речь пойдёт о датчике влажности почвы. https://сайт/


Самые интересные ролики на Youtube


Пролог.

Конечно, прежде чем изобретать велосипед, я пробежался по Интернету.

Датчики влажности промышленного производства оказались слишком дороги, да и мне так и не удалось найти подробного описания хотя бы одного такого датчика. Мода на торговлю «котами в мешках», пришедшая к нам с Запада, уже похоже стала нормой.


Описания самодельных любительских датчиков в сети хотя и присутствуют, но все они работают по принципу измерения сопротивления почвы постоянному току. А первые же эксперименты показали полную несостоятельность подобных разработок.

Собственно, это меня не очень удивило, так как я до сих пор помню, как в детстве пытался измерять сопротивление почвы и обнаружил в ней... электрический ток. То есть стрелка микроамперметра фиксировала ток, протекающий между двумя электродами, воткнутыми в землю.


Эксперименты, на которые пришлось потратить целую неделю, показали, что сопротивление почвы может довольно быстро меняться, причём оно может периодически увеличиваться, а затем уменьшаться, и период этих колебаний может быть от нескольких часов до десятков секунд. Кроме этого, в разных цветочных горшках, сопротивление почвы меняется по-разному. Как потом выяснилось, жена подбирает для каждого растения индивидуальный состав почвы.


Вначале я и вовсе отказался от измерения сопротивления почвы и даже начал сооружать индукционный датчик, так как нашёл в сети промышленный датчик влажности, про который было написано, что он индукционный. Я собирался сравнивать частоту опорного генератора с частотой другого генератора, катушка которого одета на горшок с растением. Но, когда начал макетировать устройство, вдруг вспомнил, как однажды попал под «шаговое напряжение». Это и натолкнуло меня на очередной эксперимент.

И действительно, во всех, найденных в сети самодельных конструкциях, предлагалось замерять сопротивление почвы постоянному току. А что, если попытаться измерить сопротивление переменному току? Ведь по идее, тогда вазон не должен превращаться в "аккумулятор".

Собрал простейшую схему и сразу проверил на разных почвах. Результат обнадёжил. Никаких подозрительных поползновений в сторону увеличения или уменьшения сопротивления не обнаружилось даже в течение нескольких суток. Впоследствии, данное предположение удалось подтвердить на действующей поливальной машине, работа которой была основана на подобном принципе.

Электрическая схема порогового датчика влажности почвы.

В результате изысканий появилась эта схема на одной единственной микросхеме. Подойдёт любая из перечисленных микросхем: К176ЛЕ5, К561ЛЕ5 или CD4001A. У нас эти микросхемы продают всего по 6 центов.


Датчик влажности почвы представляет собой пороговое устройство, реагирующее на изменение сопротивления переменному току (коротким импульсам).

На элементах DD1.1 и DD1.2 собран задающий генератор, вырабатывающий импульсы с интервалом около 10 секунд. https://сайт/

Конденсаторы C2 и C4 разделительные. Они не пропускают в измерительную цепь постоянный ток, которые генерирует почва.

Резистором R3 устанавливается порог срабатывания, а резистор R8 обеспечивает гистерезис усилителя. Подстроечным резистором R5 устанавливается начальное смещение на входе DD1.3.


Конденсатор C3 – помехозащищающий, а резистор R4 определяет максимальное входное сопротивление измерительной цепи. Оба эти элемента снижают чувствительность датчика, но их отсутствие может привести к ложным срабатываниям.

Не стоит также выбирать напряжение питания микросхемы ниже 12 Вольт, так как это снижает реальную чувствительность прибора из-за уменьшения соотношения сигнал/помеха.


Внимание!

Я не знаю, может ли длительное воздействие электрических импульсов оказать вредное воздействие на растения. Данная схема была использована только на стадии разработки поливальной машины.

В для полива растений я использовал другую схему, которая генерирует всего один короткий измерительный импульс в сутки, приуроченный ко времени полива растений.

16.04.2014

Определение количественных показателей влажности газовых сред, жидкостей, твердых и сыпучих тел – востребованная задача практически для всех сфер промышленности, хозяйственной и научной деятельности, различного типа производств. Все методы определения влажностных показателей делятся на прямые и косвенные. Прямой способ подразумевает непосредственное отделение сухого вещества в исследуемом материале от влаги. Принцип косвенных методов заключается в измерении физических величин, имеющих функциональную связь с влажностью вещества или материала.

Необходимость беспрерывно производить замеры, контролировать и регулировать содержание влаги в различных веществах способствовало разработке и развитию компактных сенсорных приборов – датчиков влаги. Они значительно облегчили процесс круглосуточного детектирования концентрации молекул воды в анализируемом материале. Современные сенсорные датчики должны отвечать целому ряду требований: помимо высокой точности, чувствительности и быстроты операций, данные устройства должны иметь широкий измерительный диапазон, охват нескольких порядков анализируемой величины, стабильность показаний.

Области применения датчиков

Измерение показателей влажности необходимо в таких сферах деятельности, как:

  • химическое производство;
  • транспортировка топлива;
  • фармацевтика;
  • полимеризация;
  • животноводство;
  • хранение продукции;
  • обслуживание холодильных и морозильных камер;
  • лесоперерабатывающая промышленность;
  • работа пищевых цехов;
  • сельскохозяйственная отрасль и т. д.

Виды влажностных датчиков

Датчики для замеров влажности классифицируются по различным критериям, например по:

  • агрегатному состоянию и структурным особенностям материала, который подлежит анализу;
  • условиям и режиму эксплуатации – существуют датчики для беспрерывных и дискретных контрольно-измерительных мероприятий;
  • способу осуществления замеров – датчики имеют проточный и погружной тип;
  • методу определения влажностных показателей.

Последний критерий поспособствовал выделению двух больших групп, пользующихся высоким спросом: сорбционные и сорбционно-импедансные датчики.

Сорбционные датчики влажности

Для определения и контроля незначительных концентраций влаги применяются датчики сорбционного типа, принцип измерения в которых основывается на пъезосорбционных и сорбционно-импендасных способах мониторинга.

Главный функциональный элемент таких датчиков – сорбционный слой, который при контакте со средой исследования способен поглощать пары воды. Часто в роли такого слоя выступает полимерная пленка или материал на основе высокопористых неорганических оксидов.

Чем выше размерные характеристики внутренних полостей материала, тем большей эффективностью обладает датчик на его основе. Поэтому оптимальными анализирующими элементами служат пористые и мезопористые материалы. При этом важно отметить, что увеличение влагочувствительности датчиков с помощью такого материала так же может сопровождаться увеличением погрешности производимых замеров. В связи с этим разработка и производство датчиков влажности требует особого контроля и соблюдения технологий формирования чувствительного элемента.

Сорбционные датчики, задействуемые при мониторинге влажности различных сред, могут иметь структуру по типу «сэндвич». Изготовление датчика осуществляется на подложках из стеклокристаллического материала или поликорового наполнителя. Электроды выполняются на основе никеля с ванадиевым покрытием. Чувствительная гидрофильная прослойка представлена специальной наноструктурированной пленкой из полимеров, ее формирование происходит по особой технике. На прослойку из полученной диэлектрической пленки наносится особо тонкое золотое покрытие (мембраны данной пленки способны селективно пропускать молекулы воды), которое берет на себя функционал второго электрода. Обеспечивает надежное исполнение конструкции непосредственное расположение контактов на уровне нижнего электрода. Постоянная времени имеет значение:

  • для датчика относительной влажности – 1-2 с;
  • для датчика микровлажности – от 10 до 180 с, такой широкий диапазон обуславливается зависимостью от уровня исследуемой концентрации влаги.

Особая технология термической обработки влажностного датчика помогает снизить значение погрешности устройства до 2 %.

Датчик влажности «сэндвич» типа:

1. Основание датчика;

2. Нижние электроды;

3. Пленка сорбента;

4. Верхний электрод.

Работа датчиков влажности часто сопряжена с применением термоизмерителей. Это помогает повышать точность исследований среды, обеспечивать корректный пересчет единиц измерения и получать максимально точные значения абсолютной и относительной влажности.

Особая роль отводится датчикам относительной влажности при мониторинге атмосферы, климата производственных помещений и жилых построек. Также без данных датчиков не обходится работа гидрометеорологического оборудования, в том числе зондов.

Датчики, применяемые для мониторинга параметров микровлажности, востребованы при исследованиях особо чистых активных газов и их сред (примером может служить аргон или кислород). Поэтому без такого измерительного оборудования не обходятся отрасли электроники, лабораторные корпуса и т. д.

Сорбционно-импедансные датчики

Определить концентрацию влаги в различных средах помогают датчики сорбционно-импедансного типа. Преимуществом этих устройств мониторинга влажности служат:

  • высокие показатели чувствительности;
  • простая технология изготовления;
  • компактность изделия.

Работа такого датчика основывается на зависимости комплексного сопротивления сорбционного слоя от объема поглощенной им влаги. Такие датчики влажности могут иметь два варианта конструктивного исполнения:

  • вышеописанная структура «сэндвич»;
  • с планарным размещением электродов, часто имеют форму гребенки.

Градуировочные характеристики сорбционно-импедансных средств измерения влажности зависят от сорбционного материала. Изначально в роли сорбционного слоя выступали гигроскопичные ионообразующие добавки в виде солей (такие как хлорид лития, фторид бериллия и т. д.). Измерительным датчикам подобного вида свойственны недочеты – низкая стабильность показателей, меньшая чувствительность и большая вероятность погрешностей.

Основываясь на этом, современные производители редко используют ионообразующие соли как самостоятельный влаговосприимчивый агент. Гигроскопичная соль в производстве датчиков получила вспомогательную роль – ее используют в качестве материала пропитки или добавки для повышения влагочувствительности. Основное применение в различных сферах получили импедансные измерители с полимерными сорбентами (как органическими так и неорганическими) на основе оксидов металлов. Покрытие может иметь тонкопленочный или толстопленочный вариант.

Процесс совершенствования датчиков влажности

Как в отечественном, так и в зарубежном производстве датчиков влажности просматривается эффективное направление развития – разработка инновационных влагочувствительных композиций. В целом, для этой отрасли характерны следующие особенности:

  • неминуемый переход на групповую планарную микроэлектронную технологию производства (применяется как тонкопленочная, так и толстопленочная);
  • создание мультизадачных устройств, например, интегральных датчиков температуры и влажности. Эксплуатация таких датчиков не только способствует повышению точности производимых замеров, но и приводит к упрощению процесса их калибровки;
  • приведение к единой системе конструкций датчиков влажности, а также средств обработки сигналов на фоне широкого применения микропроцессоров.

Существование широкого многообразия моделей датчиков влажности можно объяснить тем, что ни один из них не является универсальным. Каждый тип датчика имеет свою специфику, обладает преимуществами и недостатками, а значит выбор устройства должен происходить с учетом особенностей его применения.


Мониторинг влажности с контрольно-измерительными приборами ЭКСИС

На основе изготавливаемых датчиков влажности АО «Экологические сенсоры и системы» разрабатывает автоматизированные системы многоканального типа, а также стационарные и мобильные варианты контрольно-измерительных приборов. Последние используются для мониторинга относительной влажности и температурных показателей (устройства линейки ИВТМ-7), при исследованиях микровлажности газов (линейка ИВГ-1).

Стоит отметить, что в изданиях научно-исследовательского и технического назначения понятие датчика влажности подразумевает устройства, в составе которых присутствует влагочувствительный элемент (сенсор) и электросхема для приема и преобразования сигнала от сенсора в необходимое значение. Именно поэтому устройства мониторинга часто именуют датчиками.

Разрабатываемые устройства задействуют при решении задач в условиях производств, обеспечения условий комфортной и безопасной деятельности работника в различных промышленных сферах. Примером может служить задействование приборов измерения в электронике, на химических предприятиях, атомных станциях и т. д.

Производимые приборы обладают всеми необходимыми характеристиками для объединения устройств в общую измерительную сеть. Комплектация такой сети может включать многоканальные и одноканальные приборы, сетевые и портативные модели, измерительные преобразователи. Работе инновационных измерительных систем характерно распределенная схема управления, удаленный контроль (в том числе посредством сети Интернет) и другие современные технологии контрольно-измерительных мероприятий.

© 2024 pechivrn.ru -- Строительный портал - Pechivrn