Современная водоподготовка. Новые технологии очистки воды. Недостатки угольных фильтров

Главная / Семейный бюджет

С. Громов, к. т. н., А. Пантелеев, д. ф.- м. н., А. Сидоров, к. ф.- м. н.

Переход экономики на рыночные отноше ния характеризуется резким обострением конкуренции. Один из решающих факторов, позволяющих производителям товаров и услуг выживать в конкурентной среде, - снижение себестоимости продукции. В свою очередь, издержки производства (или эксплуатационные расходы) являются основополагающим показателем, определяющим себестоимость.

Затраты на водоподготовку - это неотъемлемая часть эксплуатационных расходов предприятий энергетического и нефтехимического комплексов . Задача сокращения эксплуатационных расходов на водоподготовку усложняется ростом тарифов за водопользование; непрерывным ухудшением качественных показателей воды (например, увеличением солесодержания) в источниках, пригодных для промышленного использования; уже сточением нормативов по количественным и качественным показателям для сбрасываемых сточных вод ; повышением требований к качеству обработанной воды, используемой в технологическом цикле.

Решить задачу сокращения эксплуатационных расходов на водоподготовку позволяет внедрение новых технологий. Говоря о современных подходах к решению задач по водоподготовке, надо, в первую очередь, выделить мембранные технологии водоподготовки: ультра- и нанофильтрацию , обратный осмос , мембранную дегазацию и электродеионизацию воды .

На базе указанных процессов возможна реализация так называемых интегрированных мембранных технологий (ИМТ) , применение которых позволяет снизить эксплуатационные затраты на водоподготовку, несмотря на негативное влияние любых из перечисленных выше факторов.

Проиллюстрируем последнее утверждение примером решения задачи по получению деминерализованной воды (с остаточной электропроводимостью не более 0,1 мкСм/см) в случае, когда исходной является речная поверхностная вода.

Традиционным методом решения данной задачи является применение технологической схемы водоподготовки , представленной на рис. 1. На рис. 2 можно увидеть, как выглядит альтернативное решение с использованием «интегрированных мембранных технологий».

Ультрафильтрация обеспечивает предподготовку поверхностной воды перед ее дальнейшей деминерализацией. При использовании ультрафильтрации воды , заменяющей стадии известкования с коагуляцией и осветлительного фильтрования, резко сокращается потребление реагентов, потребление воды на собственные нужды со ставляет менее 10 % (зачастую - лежит в пределах 2-5 %), а в фильтрате отсутствуют взвеси и коллоиды.

Приведенные данные позволяют оценить экономическую эффективность от применения ультрафильтрации воды в сравнении с традиционной предподготовкой.

Использование технологии обратного осмоса (или нанофильтрации в комбинации с обратным осмосом) для целей деминерализации воды также дает ряд преимуществ перед схемой традиционного двухступенчатого параллелькоточного ионирования:

  • во-первых, применение мембранных технологий не сопровождается расходом большого количества реагентов (кислот и щелочей) на регенерацию;
  • во-вторых, исключается образование высокоминерализованных сточных вод , вызванных сбросом избытков реагентов при регенерациях;
  • в-третьих, достигается значительно более высокая, чем при ионном обмене, степень удаления из обрабатываемой воды органических соединений (в том числе неполярных) и коллоидной кремневки;
  • в-четвертых, отсутствует необходимость нейтрализации сбрасываемых сточных вод .

Таким образом, эксплуатационные затраты при использовании мембранных методов водоподготовки оказываются существенно ниже, чем в случае применения традиционной технологии ионирования. На рис. 3 показана так называемая точка экономического равновесия эксплуатационных затрат при использовании мембранной и ионообменной технологий деминерализации воды в зависимости от значения солесодержания исходной воды. Отметим: в рассматриваемом случае подразумевалось, что для ионного обмена применяется технология противоточной регенерации (например, АПКОРЕ, чьи затраты на реагенты в 1,5-2 раза ниже, чем при параллельноточной регенерации).

Заметим, что в современных условиях обессоливающие установки, принцип действия которых основан на применении процесса выпарки {термодистилляции}, вряд ли смогут конкурировать по показателю эксплуатационных затрат с ИМТ для обработки воды с солесодержанием до 2 г/л. Себестоимость обессоленной воды, полученной термодистилляционным методом, составит не менее 30 руб./м 3 , даже если принять, что тепловые потери при выпарке будут находиться на теоретически минимальном уровне, а себестоимость 1 Гкал равняется 200 руб.

Наконец, электродеионизация воды, являясь безреагентной и бессточной мембранной технологией водоподготовки , обеспечивает остаточную электропроводимость деминерализованной воды на уровне 0,08 мкСм/см. Очевидно, что и эксплуатационные затраты на электродеионизацию будут ниже, чем для ФСД. Правда, следует отметить, что стабильность показателей работы установки электродеионизации воды зависит от того, насколько хорошо функционирует система обратного осмоса : в случае возникновения сбоев в работе последней неизбежным следствием будет снижение эффективности процесса электродеионизации воды.

С учетом данного обстоятельства вместо электродеионизации (для случаев, когда требуется обеспечить высочайшую степень надежности работы технологической схемы обессоливания воды) можно применить противоточное Н-ОН-ионирование или ФСД.

Если вариант с ФСД пред почтительнее по показателям экономии реагентов при регенерации, то противоточное Н-ОН-ионирование - по соображениям простоты автоматизации и удобства в эксплуатации. Кроме того, если в установке Н-ОН-ионирования предусмотрено использование технологии АПКОРЕ , то технологическая схема обретает дополнительную степень устойчивости и может эксплуатироваться даже в условиях байпассирования обратного осмоса .

Сама по себе технология противоточной регенерации ионитов АПКОРЕ с успехом используется в тех случаях, когда потребитель намерен ограничиться только реконструкцией (в противоток) существующей параллельно-точной ионообменной установки водоподготовки , или в условиях, когда значение солесодержания исходной воды стабильно ниже 100 мг/л, а неполярная органика и коллоидная кремневка присутствуют в ней в пренебрежимо малом количестве.

Рассматривая задачу умягчения воды , стоит упомянуть схему, в которой нанофильтрация сопровождается доумягчением на натрий-катионитных фильтрах.

Благодаря способности нанофильтрационных мембран хорошо задерживать поливалентные ионы нанофильтрация с успехом применяется для решения задач по умягчению воды. Если из-за высокого значения жесткости исходной воды нанофильтрация не обеспечивается требуемая степень умягчения воды, фильтрат направляется на натрий-катионитные фильтры для доумягчения. Причем эти фильтры функционируют как в режиме противоточной регенерации (например, АПКОРЕ), так и в параллельноточном режиме, если частота регенераций натрий-катионитных фильтров невысока (например, менее двух раз в месяц).

В последние годы всё отчетливее проявляется стремление потребителей перерабатывать сточные воды с целью их повторного использования в технологическом цикле. При этом традиционными задачами, решаемыми путем применения мембранных технологий (чаще всего - ультрафильтрация в сочетании с обратным осмосом ), являются сокращение объема сбрасываемых сточных вод и снижение уровня потребления воды, забираемой из природных источников.

В то же время, применение мембранных технологий водоподготовки позволяет подойти к решению еще одной очень важной экологической проблемы - резкому сокращению потребления соли, используемой для регенерации действующих фильтров ионообменного умягчения воды . Указанная цель достигается посредством повторного использования солесодержащих стоков после обработки для регенерации натрий- катионитовых фильтров.

Использовать воду в быту приходиться не просто каждодневно, использование ее можно назвать ежеминутным. Человек даже не замечает, как постоянно, то протирает что-то, то моет, то стирает. А не стирает, так готовит, или пьет чай. Получается, что человек существовать без водных ресурсов не может. И значит, вопросам доведения воды до нужного состояния следует уделять достаточно времени.

Состав современных систем водоподготовки

Современная система водоподготовки подразумевает доведение воды до нужных показателей, исходя из того, какие наличные примеси, может включать в себя исходная вода. Наибольшим количеством разного рода включений отличается поверхностная вода. В общем же и целом вода, может отличаться такими примесями:

  • Мусор, любые твердые включения;
  • Запах и муть;
  • Соли металлов;
  • Бактерии;
  • Жесткость;
  • Растворенные газы

Все новые и современные технологии водоподготовки строго подчинены видам примесей, которые может включать в себя вода. Даже разные маслообразующие элементы привели к созданию, таких очистных элементов, как мазуто и жиро- уловители. Идентифицировать в своей воде вредные примеси можно по различным косвенным признакам и вот некоторые из них:

На самом деле видов примесей и их характеристик намного больше. Догадаться о наличии той или иной примеси можно. Но вот правильно ее определить поможет только лабораторный анализ. В таких вопросах на собственное мнение полагаться нельзя, т.к. многие примеси по началу могут проявлять себя одинаково. Это может спутать человека, и он купит себе неправильный фильтрующий прибор, который не принесет результатов.

Этот факт должен подвести потребителя к той мысли, что обязательным элементом любой новой и современной водоподготовки будет этап оценки состояния воды. Многие потребители, пользуясь водой из центральных систем водоснабжения, пренебрегают данным этапом. Но на первой стадии и сильно хлорированная и жесткая вода будут вести себя одинаково. Потому есть риск спутать вид примеси. Или же всегда можно подождать образования известкового налета и тогда точно определиться с прибором. Правда наличие жесткости в воде вовсе не исключает высокого порога хлористости. Анализ же обойдется потребителю не более 2000 рублей . Потому стоит ли рисковать оборудованием и чистотой поверхностей, ожидая пока образуется осадок?

Кроме этого, нужно понимать, что выбирать придется исходя из своих финансовых возможностей. Возможно, стоит немного еще подождать с монтажом современных систем водоподготовки, но поднакопить и смонтировать качественную новую систему на года и десятилетия.

Альтернативу современным технологиям водоподготовки представляют собой системы очищения поверхностей от накипи. В промышленных реалиях они давно уже проиграли битву прогрессивным очистным технологиям. А потребитель все еще считает свои средства и не всегда их ему хватает на очистные установки для всех видов примесей.

Очистка поверхностей от новых накипных отложений должна бы вести к положительным результатам. Но на деле получается, что очищенные поверхности, только стимулируют, ускоряют образование нового налета. Почистить поверхность не очень трудно, когда это делается редко. Хуже, когда это трудоемкий процесс, который с годами нужно проводить чаще, а результат с каждым разом все хуже.

Особенность накипи состоит в том, что на неровные поверхности она оседает быстрее, и устранить ее с таких поверхностей намного сложнее. Она вьедается намертво. Устранить ее можно только значительно повредив поврехность. Из-за этого оборудование быстрее выходит из строя. Причем убирать накипь можно соляными кислотными средствами, можно и металлическими щетками. Результат будет, по всей видимости, почти одинаков. Только будут царапины на поверхностях, или разъеденные кислотой дорожки. Оставить накипь без внимания тоже нельзя. Любой толщины известковый налет является хорошим теплоизолятором. Каких-то полмиллиметра накипи могут полностью вывести из строя мощный котел!

Что касается других примесей, то борьба с ними не вызывает у потребителя сомнений, т.к. их хотя бы видно или их можно почувствовать, в отличие от жесткости в воде. Да и потребляя любую воду с другими примесями, можно отравиться. Жесткую же воду можно потреблять годами и не ощущать вреда. Значительного, имеется в виду. Во всяком на здоровье негативный след, накипь и жесткость оставляют медленно. Потому и стремятся производители так сегодня продвинуть умягчители в массовое потребление.

Соревнований технологий

Выбрать какую-то одну, но идеальную современную технологию водоподготовки на сегодня невозможно. Ее попросту нет. Все равно для достижения лучшего результата придется использовать комплексный подход, на который оказывают влияние и исходные параметры и конечные, на пару с финансовыми возможностями потребителя.

Но, тем не менее, любой вид примеси сегодня можно убирать путем физического воздействия или химических реакций. Особняком стоят мембранные технологии очистки и умягчения, и стандартная механическая очистка. Проще всего работает механика. Есть засыпка или решетки с разной пропускной способностью. Грязная вода, пройдя такие преграды, оставляет в них весь мусор практически, вплоть до мелких песчинок. Если в составе водоподготовки есть еще и сорбент, то устранят все примеси твердого характера, даже те, что образуют запах и мутность воды.

Промыть такой прибор просто, нужно только воду запустить в систему в обратном направлении. Тогда вода просто вынесет весь осадок на сетке. Или все то, что застряло между частицами керамзита или галькой. Чтобы засыпка не покрывалась илом, и не обрастала бактериальным налетом, ее специальным раствором обрабатывают, он тормозит рост бактерий. Никаких дополнительных расходов не требует.

Уф технология

Следующим вариантом очистки воды будет дезинфекция. Устранять вредные вирусы можно с помощью химических веществ (любые хлорсодержащие элементы будут относится к реагентной дезинфекции) или же облучения, например с помощью ультрафиолетовой лампы. Малые дозы ее облучения для человеческого организма абсолютно безвредны, а для большинства вирусов губительны. Для получения питьевой воды в большинстве случаев применяют УФ-лампы, для всего остального есть дозаторы. Но в этом случае из воды приходится устранять и продукты их реакций. Ведь кроме бактерий, в воде есть и соли металлов, к примеру. Они могут реагировать с химикатами и образовывать новые вещества, которые опять же оседают на поверхностях плотной корочкой. УФ технология в работе более экономична, долговечна, но у нее нет остаточного эффекта, как у того же хлора. Есть еще химическое озонирование, но благодаря тому, что озон является жидким кислородом, для человека оно, к счастью, безопасно. Но для оборудования не очень. Да и производить озон нужно непосредственно на месте, что тоже добавляет трудностей.

Современные технологии водоподготовки для работы с солями железистости направлены на то, чтобы превратить растворенное железо в малорастворимую форму, которую легко можно отфильтровать. В работает либо кислород, как сильнейший окислитель, или же марганцевый песок, который хорошо удерживает соли железа. Работает все тот же принцип разделения на реагенты и не реагенты. Сегодня в большей степени используют безреагентные обезжелезиватели. Т.к. они дешевле, хоть и потребляют электроэнергию. Секрет Уф технологии состоит в том, чтобы под воздействием мощного насоса гоняется воздух внутри воды, заставляя соли железа окисляться и образовывать осадок. Его устранить не составит труда.

Безреагентная технология

Что касается безрегаентных умягчителей, то тут самым удобным является электромагнит. Он поможет воду сделать более мягкой. Но он же поможет избавиться от ненужных солей из старых запасов. Любая хозяйка скажет, как трудно устранять старые остатки накипи. Особенно, когда они оседают внутри узких проходов и забивают их. Нужно все разбирать, замачивать в кислотных средствах и потом пытаться разрыхлять. С безреагентной технологией водоподготовки ничего этого делать не придется. Силовые линии помогут новым солям жесткости постепенно разрыхлять старые остатки, даже в самых неудобных местах. И разбирать оборудование при этом не придется. Причем работать магнит будет практически как часы, в течение нескольких десятков лет. Другие приборы такой долговечностью похвастаться не могут. Да и менять в них постоянно что-то приходится. А такая новая безреганетная технология крайне удобен для домашнего потребления еще и своим бесхлопотным обслуживанием. Точнее, следить или что-то менять в нем вообще не нужно. Накрутил на трубу. Включил в розетку, и забыл о приборе лет на двадцать.


Для обессоливания воды применяется Н/ОН-ионирование (химическое обессоливание) и обратный осмос. В общем виде установка химобессоливания включает катионитный фильтр, декарбонизатор, бак декарбонизованной воды, химический насос и анионитный фильтр. В качестве загрузок фильтров в небольших котельных в подавляющем большинстве случаев используются сильнокислотный катионит и сильноосновный анионит. При сравнительно небольшой щелочности (и/или производительности системы) возможна работа без декарбонизатора, но это влечет за собой увеличение объема анионита, который значительно дороже катионита. Вообще, в установках Н/ОН-ионирования объемы катионита и анионита как правило различны. Для минимизации стоимости установки целесообразно рассчитывать каждую ступень отдельно, чтобы они выходили в регенерацию не как единая система (сначала катионообменный фильтр, за ним сразу анионообменный), а независимо друг от друга; при этом фильтроциклы каждой ступени могут различаться в разы. Н-катионитные и ОН-анионитные фильтры конструктивно аналогичны фильтрам умягчения. При использовании современного аппаратурного оформления единственной ручной операцией при их эксплуатации является приготовление регенерационных растворов. По сравнению с установками умягчения, более строгие ограничения накладываются на материалы, соприкасающиеся с регенерационными растворами кислот и щелочей, т.е. не допускается применение деталей из капролона, латуни и т.п. Ионообменное обессоливание подразумевает использование для регенерации кислоты и щелочи, которые являются опасными веществами, в количествах в два-три раза превышающих стехиометрические, и, кроме того, образование кислотнощелочных стоков, которые требуется нейтрализовать перед сбросом в канализацию. Обратный осмос лишен этих недостатков, поэтому в настоящее время он находит все более широкое применение, несмотря на сравнительно высокие капитальные затраты.

Стандартная обратноосмотическая установка включает в себя: блок фильтров тонкой очистки; используются патронные фильтры с пятимикронными картриджами; блок насосов высокого давления; блок мембранных модулей; состоит из рулонных мембранных элементов, заключенных в корпуса из стеклопластика или нержавеющей стали; блок дозирования кислоты и ингибитора для предотвращения загрязнения мембран отложениями солей (необходимость дозирования кислоты и ингибитора и дозы определяются расчетным путем по величине индекса Ланжелье концентрата); блок промывки — промывки необходимы для продления срока службы мембран, т.к. в любом случае в процессе работы на их поверхности происходит отложение солей (частота промывок зависит от качества исходной воды и правильности расчета установки и может составлять не более одного раза в три-четыре месяца). Дополнительно в промышленных установках устанавливаются кондуктометры для слежения за качеством пермеата, шкаф автоматики с контроллером и многие другие устройства для автоматизации и контроля процесса.

Производительность же обратноосмотических установок по пермеату в среднем составляет 60-75 %. Стандартные установки ограничены рабочим давлением в 16 бар, т.к. это максимальное давление для труб ПВХ. Применение нержавеющих труб увеличивает стоимость установки. При солесодержании выше 2000-3000 мг/л рабочее давление становится выше 16 бар, и для его снижения, как правило, увеличивают сброс концентрата и соответственно снижают производительность по пермеату. Селективность обратноосмотических мембран — от 98 до 99,7 % по NaCl, рабочее давление — от 6 до 25 бар.

Как химобессоливание, так и обратный осмос позволяют получить воду с удельной электропроводностью на уровне 5-50 мкСм/см, в зависимости от солесодержания исходной воды. Более глубокое обессоливание проводится в две ступени. Каждая установка, будь то Н-катионирование, химобессоливание и особенно обратный осмос, должна рассчитываться и подбираться индивидуально для конкретного случая.

Коррекционная обработка воды
Традиционно для коррекционной обработки воды применяются: фосфаты (тринатрийфосфат, гексаметафосфат, триполифосфат и различные их смеси) для предупреждения появления кальциевой накипи и поддержания уровня рН воды, при котором обеспечивается защита стали от коррозии; сульфит натрия для химического обескислороживания воды после деаэратора или взамен деаэратора при небольшом расходе подпиточной воды (до 2 м3/ч); аммиак для связывания углекислоты в питательной воде и в паре с целью защиты от углекислотной коррозии питательного и пароконденсатного трактов.

Применение этих реагентов требует специального реагентного хозяйства. Фосфаты сначала растворяют в специальном растворном баке, затем фильтруют раствор на осветлительном фильтре для удаления загрязнений. При приготовлении раствора сульфита натрия необходимо применять меры по изоляции его от воздуха. Для растворения сульфита используется герметизированный бак, который перед подачей воды на растворение должен продуваться паром. Особые требования предъявляются к помещению и квалификации обслуживающего персонала при работе с аммиаком, который относится к классу опасных веществ. Кроме того, аммиак вызывает коррозию медьсодержащих сплавов. Для небольших котельных (в отличие от ТЭЦ) применять традиционные технологии коррекционной обработки воды просто нереально по вышеперечисленным причинам. Остается два пути: вообще не проводить коррекционную обработку, снижая эффективность работы и сроки службы основного оборудования, либо применять эффективные и удобные в использовании современные реагенты (хотя и довольно дорогостоящие), расходы которых при низких объемах подпитки могут оказаться не такими уж большими. Современные реагенты поставляются в жидком виде готовыми к использованию, могут разбавляться умягченной водой в любых пропорциях. При их применении не требуется специального реагентного хозяйства, достаточно только растворного бака и насосадозатора.

От качества воды, которую ежедневно пьёт человек, зависит не только его пищеварение. Эта жидкость влияет на самочувствие, здоровье, иммунитет, внешний вид, качество сна и ещё массу факторов. Уже давно человечество не стремится к получению для своих нужд дистиллированной воды, которая когда-то считалась эталоном. Теперь требования стали более современными и зависят от целевого направления: для ежедневного употребления в пищу, для изготовления лекарств, для полива растений и т.д.

Очистка для любых целей начинается с ликвидации механических частиц, которые видны невооружённым взглядом. Такая мера не только улучшает конечный результат, но и уберегает тонкие фильтры. Важно понимать, что в любом методе существуют как сильные стороны, так и недостатки. Все современные инновации и прогрессивные технологии направлены на то, чтобы достичь оптимального качества очищающейся жидкости, обеспечив минимальное количество недостатков, присущих процессу.

Для пищевых целей

К качеству питьевой воды предъявляют самые высокие требования, поскольку оптимальные значения конечного продукта влияют и на вкусовые характеристики различных блюд и напитков, и на организм человека.

Нанофильтрация

Одна из самых современных технологий в первую очередь нашла применение в таких странах, как Франция, Голландия и США.

Нанофильтрация обладает следующими преимуществами:

  • идеально удаляет цветность;
  • избавляет от галогенных примесей органики;
  • выводит ионы хлора безреагентным методом.

Главным плюсом считается высокоэффективная борьба с хлорсодержащими остатками, которые нередко присутствуют в воде, подаваемой по общему трубопроводу после обеззараживающей очистки.

Среди недостатков новой методики можно выделить необходимость в обеспечении многоступенчатой предварительной обработки, которая выведет из раствора все механические частицы и взвешенные вещества.

Для получения продукции экстра-качества перед нанофильтрами могут оборудовать установки обратного осмоса и коагуляционные системы.

Выполнение всех этих требований автоматически делает нанофильтрацию самым дорогим методом, что не позволяет использовать её в массовых масштабах. Такая технология используется для особых категорий: недоношенных детей, в постоперационных реабилитационных периодах, для приготовления искусственного питания грудных детей и т.д.

Фотокатализация

Ещё одна технология подготовки питьевой воды, которая изобретена недавно, но получила одобрение всех мировых специалистов в данной индустрии.

Главные её преимущества:

  • отсутствие предварительной обработки химическими или другими методами;
  • эффективное удаление взвешенных веществ;
  • выведение органических примесей.

Первые подобные очистные приборы выпущены в Великобритании и Нидерландах. В тубе находится одна или несколько капиллярных мембран, которые пропускают очищаемые потоки. Чем больше таких мембран, тем выше производительность установки. Трубчатая система способствует тому, что в установке не возникает застойных зон, в которых могут образоваться донные залежи.

Низкая производительность (до 200 кубов в сутки) не даёт наладить серийное производство для высокомощных потребителей. К тому же, высокое потребление электроэнергии, за счёт которой обеспечивается достаточная скорость потока, обращает на себя внимание. Фотокатализаторы целесообразно применять в производствах, получающих электроэнергию от солнечных батарей или от ветра.

Рулонные аппараты

Очередная новинка водоочистки – рулонные аппараты. Тестирования в лабораториях для таких установок уже завершены, теперь они поступают в производство.

Их преимущества:

  • эффективность в борьбе с высокой цветностью (до 150) и взвешенными веществами;
  • возможность регулировки скорости потока и производительности;
  • простота схемы;
  • лёгкость монтажа.

Рулонные аппараты имеют небольшое гидравлическое сопротивление, а на отдельном участке оборудованы открытым каналом, который позволяет легко удалять образовавшийся осадок. Очистка проводится также при помощи повышения скорости потока, который выносит из рулонного аппарата отложения.

Минусом является то, что систему нужно оборудовать специальной механической доочисткой, чтобы содержащиеся твёрдые элементы не засоряли узкие места в трубе. Зато энергопотребление рулонных аппаратов довольно скромное – 0,5 КВт на 1 метр кубический очищенной воды.

Опреснители

Пресные водоёмы не всегда доступны для водоснабжения, что становится всё большей проблемой. Недостаток пресной воды заставляет учёных постоянно разрабатывать и совершенствовать новые методы опреснения.

В Массачусетсе разработана новая принципиальная схема опреснения, которая основана на разделении ионов и чистых молекул без использования любых мембран.

При шоковом электродиализе, предложенном учёными, поток проходит через пористую керамику, по обе стороны которой оборудованы мощные электроды. Между ними подаётся сильный разряд, образующий ударную волну, которая режет поток на 2 части. В одной из них сосредоточена пресная, а во второй – солёная вода. Перегородка, которая установлена дальше по мере продвижения, изолирует эти части друг от друга.

Система такой инновационной очистки не засоряется, не производит осадка, поэтому не нуждается в периодическом очищении. Кроме того, сильные разряды убивают бактерии и все биологические загрязнители, из-за этого дополнительное обеззараживание и стерилизация не проводится.

Материалы для производства установки имеют умеренную стоимость, что даёт надежду на скорый массовый запуск такой системы по берегам солёных водоёмов.

Наномембрана

Метод отделения соли при помощи пористого материала нанотолщины предложен в Иллинойском университете.

Материал, из которого изготовлена мембрана – дисульфид молибден. Его раскатывают до толщины в несколько нанометров, что позволяет значительно снизить затраты на электроэнергию, необходимую для перемещения потока сквозь керамический слой. Тонкая мембрана позволяет обходиться минимальным давлением внутри системы, что снижает частоту засорения. Химические свойства молибдена дисульфида заставляют воду проницать фильтр с высокой скоростью за счёт притяжения к молибдену и отталкивания от серы.

Такая быстрая и высокоэффективная технология взята на вооружение многими крупными фермерскими хозяйствами, которые легко и недорого смогут решить проблему с поливом обширных территорий в береговой зоне.

Промышленные и сточные воды

Очистка бытовых- или промстоков является необходимым условием для многих предприятий и частных домов. Для бытовых нужд эта мера позволяет избавиться от запаха, который распространяется по участку от выгребной ямы, и препятствует образованию донных осадков, ухудшающих просачивание жидкости в грунт. Стоки промышленных производств тем более должны подвергаться предварительной обработке и очистке до входа в общую систему канализации, чтобы не нанести ущерб городским очистным сооружениям.

УФ-облучение

Такая технология очистки позволяет обеззараживать стоки от потенциально опасных объектов, таких как специфические производства биологических веществ или инфекционные больницы. Облучение для обеззараживания не влияет на здоровье человека, но надёжно устраняет бактерии, вирусы, грибки и прочие микроорганизмы.

Недостатком методики является то, что ультрафиолет влияет на большинство микробов, но не на все без исключения. При высокой мутности ультрафиолет может поглощаться загрязнённым слоем, поэтому эффективность водоочистки снизится. Это требует применения добавочных механических или химических фильтров для повышения надёжности. К тому же, система не имеет высокой мощности, поэтому на крупных предприятиях она не применяется.

Медно-цинковая технология

Прогрессивная разработка промышленной водоподготовки основана на применении гранул, содержащих медь и цинк. Эти два металла имеют разные заряды, поэтому загрязнители притягиваются либо к одному, либо к другому полюсу, оставаясь на поверхности гранул.

Кроме очищения, медно-цинковая технология убирает ионы жёсткости, делая воду умягчённой.

Недостатком является то, что в технологическом процессе образуется много обратной жидкости с высокой концентрацией загрязняющих металлов, которые должны утилизироваться через дренаж. Это повышает общий расход воды по счётчику, что сказывается на затратах производства.

Кроме того, медно-цинковая мембрана не оказывает во время очистки влияния на микроорганизмы, поэтому грибок, поселившийся на ней, сначала снижает эффективность, а потом сводит её к минимуму. Это вынуждает часто менять сработанные мембраны.

Септики

Эта технология используется для частных домов и небольших производств уже давно, но в последнее время она претерпела ряд изменений и стала более дешёвой и эффективной.

Современные септики содержат в своём составе бактерии, которые не реагируют на хлор в стоках, что раньше представляло большую проблему. Туалеты, находящиеся на участке, не требуют никаких затрат электричества для содержания и обогрева, исключается и необходимость даже редкой откачки содержимого выгребных ям.

Современный септик включает в себя 2 части: гравитационный отстойник и биологический очиститель. После отстойника, в котором оседают все взвеси, стоки попадают в объём, насыщенный микроорганизмами, перерабатывающими большинство органических и неорганических загрязнителей.

Эффективность современных септиков равняется 98%. Ил, который образовывается в отстойниках, используется в качестве органического удобрения, повышающего фракционные характеристики плодородных почв.

Анаэробные и аэробные микроорганизмы, которые содержатся в новых септиках для очистки бытовых стоков, являются устойчивыми к агрессивным средам и не погибают от резкого изменения рН среды.

Особая водоподготовка

Для изготовления сверхчистых растворов в медицине и лабораторных исследованиях необходима вода, свободная от различных примесей. И хотя известно, что идеальной чистоты на практике добиться невозможно, учёные без устали совершенствуют очистные системы для получения воды экстра-класса.

Продукт выхода – бидистиллят – приближается к химической чистоте. В новых бидистилляторах соединены несколько ступеней фильтров: ультрафильтрация, двухкаскадный осмос и обмен ионов в фильтрах смешанного действия.

После прохождения всех этапов очистки раствор носит статус высокоомного, что означает уникальное значение удельного сопротивления (17-18 МОм/см). Именно такие характеристики необходимы для получения сверхточных результатов лабораторных и медицинских экспериментов и исследований.

Деминерализация и деионизация

Современные технологии сделали возможным получение воды с минимальным содержанием минералов и ионов, приближающимся к нулю. Новые приборы, обеспечивающие такой результат, при помощи электрических зарядов на пластинах в колонках дистиллятора выводят максимально возможное количество загрязнителей, понижая их концентрацию до возможного на нынешнее время минимума.

Кроме того, в системе содержится мембрана обратного осмоса и комплексная смола для ионного обмена.

С применением деминерализованной и деионизованной составляющей реактивы дают минимальную погрешность во время анализов и практически не оказывают действия на живые ткани во время экспериментов.

Таким образом, можно сделать вывод, что технологии очистки во всех сферах активно развиваются, исследователи не останавливаются на достигнутом, внедряя в эту область новые достижения химической, механической, биологической и других видов обработки. Прогресс и возникновение современных методов позволяет улучшать результаты, а комплексный подход в использовании предложенных методик позволяет надеяться на удешевление получения чистой воды в будущем.

Промышленная водоподготовка – важный этап в производстве многих видов продукции. Ежедневно потребляя различные напитки, мы даже не задумываемся о том, сколько этапов фильтрации проходит вода, из которой они изготовлены. Не менее важна и промышленная очистка сточных вод, вместе с которыми в природные источники попадает масса вредных химических веществ. Промышленной подготовке подвергается и вода, которая подается в центральные системы водоснабжения.

С каждым годом проблема нехватки питьевой воды встает все острее. Уже сейчас порядка 1/6 части жителей Земли не имеют доступа к ней. Среди причин дефицита пресной воды:

  • высокий расход, превышающий потребности;
  • растущая численность населения;
  • таяние ледников;
  • загрязнением поверхностных вод бытовыми и промышленными отходами.

Основными источниками загрязнения являются коммунальные и промышленные стоки. Первые содержат в себе различные вредоносные бактерии, способные спровоцировать серьезные заболевания. Вторые – скопление всевозможных химических веществ: кислот и щелочей, тяжелых металлов, нефтепродуктов и т.д.

Промышленная очистка воды подразделяется на водоподготовку и водоочистку. Под водоподготовкой понимают очищение и обеззараживание воды в целях ее . На этапе водоподготовки происходит осветление, умягчение, дегазация, дезодорация и дезинфекция.

Под осветлением понимают удаление различных взвешенных и растворенных частиц, которые вызывают цветность и мутность. Умягчению способствует выведение солей кальция и магния. Благодаря дегазации из жидкости устраняются различные растворенные газы, например, сероводород. Дезинфекция приводит к уничтожению патогенной микрофлоры, а на этапе дезодорация уходят посторонние неприятные запахи.

Для достижения вышеперечисленных целей используют способы трех групп:

  1. Физические.
  2. Химические.
  3. Физико-химические.

Физические способы (методы) очистки

Физические способы промышленной очистки воды удаляют примеси без использования реагентов. В основе таких методов лежат разнообразные физические явления. К данной группе относят:

  1. Механическую фильтрацию.
  2. Ультрафильтрацию.
  3. Нанофильтрацию.
  4. Микрофильтрацию.

Механическая фильтрация воды

Промышленная очистка воды механической фильтрацией является самым простым методом, проводят ее на первичном этапе водоподготовки. Механические фильтры подразделяют на фильтры грубой и фильтры тонкой очистки.

Фильтры грубой очистки устанавливаются на этапе водозабора. Принцип работы состоит в том, что сито препятствует прохождению крупных частиц примесей: песка, глины, органики, солей кальций и магния. В народе такие фильтры получили название «грязевики». Они являются обязательным элементом водоподготовки. Благодаря им уничтожается цветность и мутность, а также уходят неприятные запахи.

Фильтры тонкой очистки в основе имеют картридж с сорбентом, проходя через который вода очищается от различных газов, химических соединений, некоторых микроорганизмов.

Среди методов физического воздействия особую популярность приобрели мембранные технологии. Основное отличие таких фильтров друг от друга – пропускная способность мембраны.

Системы обратного осмоса

Наиболее эффективной мембранной технологией является водоподготовка посредством . Размер пор в обратноосмической мембране составляет менее 0,0001 мкм. Такая мембрана пропускает молекулы воды и кислорода, задерживая при этом различные примеси. Обратноосмические фильтры способны очищать воду на молекулярном уровне практические до состояния дистиллированной.

К мембране в установках обратного осмоса раствор должен подходить очищенным от механических примесей. Поэтому системы обратно осмоса состоят из нескольких элементов, основные из них:

  1. Фильтр-предочистки, который удаляет первичную грязь.
  2. Фильтр тонкой очистки с сорбирующим материалом.
  3. Мембрана.
  4. Минерализатор. Помимо вредных загрязнений обратноосмическая мембрана уничтожает и необходимые человеку минералы, баланс которых восстанавливает минерализатор. Помимо данного картриджа в систему могут быть добавлены ионизатор и умягчающий блок.

К недостаткам данного способа относятся низкая производительность, габаритность установки и потеря воды, которая сливается с примесями.

Нанофильтрация

Второе место по пропускной способности занимает мембрана нанофильтрации, размер пор которой составляет 0,001-0,002 мкм. По сути, данные фильтры являются разновидностью обратного осмоса, очищают от бактерий и вирусов, солей жесткости, нитритов, нитратов и других примесей.

Применяется в пищевой, фармацевтической, лакокрасочной и нефтехимической промышленности.

Преимуществом данного метода в отличие от обратного осмоса является сохранение в процессе очистки полезных минералов. Именно поэтому, вода, очищенная по данной технологии, является более предпочтительной в производстве напитков.

К тому же, процесс нанофильтрации более экономичен , поскольку протекает при меньшем давлении.

Ультрафильтрация

Способ ультрафильтрации по принципу действия схож с системами обратного осмоса. Вода проходит через мембрану, которая задерживает микроорганизмы, водоросли, взвешенные частицы, способствует устранению мутности и цветности. Величина пор такой мембраны составляет 0,002…0,1 мкм, что больше размера пор в мембранах обратного осмоса и нанофильтрации. Ультрафильтрация не способствует удалению солей металлов, за счет чего вода нуждается в дополнительном смягчении.

Выше мы сказали, что данный метод по принципу действия схож с обратным осмосом, но есть и отличия.

  1. Мембрана в ультрафильтрации состоит многоканальных волокон, которые изготавливаются из модифицированного полиэстерсульфона. Число волокон составляет несколько десятков тысяч. Мембрана обратного осмоса изготовлена из синтетических материалов и представляет цилиндр из смотанной в рулон пленки.
  2. При ультрафильтрации загрязнения остаются внутри мембраны. В случае обратного осмоса после очистки из мембраны выходят два потока воды. Первый – очищенная жидкость, второй – концентрат, который сливается. Таким образом, в обратноосмических системах при очистке теряется до 1/3 воды.
  3. Ультрафильтрация в отличие от обратного осмоса не удаляет соли жесткости.

Технологическая цепочка ультрафильтрации

  1. Жидкость проходит через фильтр грубой очистки для удаления механических загрязнений, которые могут повредить мембрану.
  2. Затем взаимодействует с мембраной.
  3. Минуя модуль, вода поступает в бак чистой воды, который также называется баком обратной промывки – вода из него используется для промывки мембран от поверхностных загрязнений.

Преимуществами ультрафильтрации являются:

  • компактность оборудования;
  • максимальная дезинфекция и удаление взвеси;
  • не использование химических реагентов, хотя иногда на этапе подачи воды в систему очистки в нее могут добавлять коагулянты.

Микрофильтрация

Из мембранных методов микрофильтрация обладает модулем с самыми большими порами, размер которых составляет 0,1 до 1 мкм. Часто используется в качестве предварительного этапа очистки перед обратным осмосом или нанофильтрацией, максимально очищает от механических примесей.

Химические способы (методы) очистки воды

Принцип действия химических методов заключается в добавлении в воду специальных реагентов, которые способствуют ее очистке.

Хлорирование

Обеззараживающее воздействие хлора было обнаружено еще в 19 веке. В 1846 врачи одного из госпиталей Вены стали ополаскивать руки водой с хлором. Так было положено начало применения хлора в качестве дезинфектора.

Хлор является сильным окислителем, взаимодействуя с водой, образует хлорноватистую кислоту, которая и уничтожает бактерии. Для достижения эффекта необходимо обеспечить контакт воды с хлором минимум на 30 мин. Эффект от воздействия хлорноватистой кислоты может сохраняться еще долгое время после непосредственной обработки, для этого необходимо ввести хлор в избытке. Доза реагента в каждом случае рассчитывается индивидуально. Важно не переборщить с избытком, поскольку в большом количестве хлор способен привести к проблемам в работе организма, особенно опасны соединения, образуемые данным веществом. Например, тригалометаны вызывают симптомы астмы.

Различают несколько видов хлорирования:

  • предварительное;
  • финишное

Предварительное хлорирование осуществляется на этапе водозабора. Цель реагента на этом этапе не только уничтожить бактерии, но и вывести металлы из воды путем их окисления, также хлор дезинфицирует очистное оборудование.

Финишное хлорирование применяется на последней стадии подготовки в целях обеззараживания.

В зависимости от дозы вводимого реагенты хлорирование бывает:

  • нормальное;
  • перехлорирование;
  • комбинированное.

Нормальное хлорирование используется для очищения воды при хороших санитарных и химико-физических подателей.

Перехлорирование применяют в случае сильной зараженности источников водозабора, когда нормальное хлорирование бессильно перед патогенной микрофлорой. Дозу реагента вводят в избытке, который может привести к изменению органолептических показателей воды. Остаточный хлор удаляют путем дехлорирования. Для этого используют методы безнапорной аэрации, коагуляции или фильтрации воды через активированный уголь.

Комбинированные методы подразумевают обработку воды хлором в сочетании с другими реагентами: серебром, медью, магнием и т.д. Применяются для повышения воздействия хлора, а также обеспечения пролонгирующего эффекта.

К достоинствам хлорирования относятся:

  • эффективность;
  • простота в использовании;
  • экономичность способа;
  • комплексное в очищении воды.

Среди недостатков можно выделить:

  • серьезные требования к хранению и перевозке хлорсодержащих соединений;
  • образование посторонних соединений, которые в случае попадания в человеческий организм представляют серьезную угрозу;
  • устойчивость ряда микроорганизмов к воздействию хлора.

Озонирование

Озонирование является одним из современных методов водоподготовки и очистки сточных свод. Применяется в пищевой, химический и медицинской промышленности.

Озон является сильным окислителем, разрушающе воздействует на бактерии, вирусы, грибки, металлы и различные химические соединения, благодаря чему способствует обесцвечиванию, дезодорации и обезвреживанию воды. Доказано, что большинство известных микроорганизмов не устойчивы к влиянию газа.

Обладая коротким периодом распада, озон не выпадает в осадок, а преобразуется в кислород, что делает воду полезной. Почти мгновенный распад молекул газа в то же время является и серьезным недостатком озонирования, поскольку уже через 15-20 минут после обработки возможно повторное заражение воды. Некоторые источники свидетельствуют о том, что озон способствует «пробуждению» спящих микроорганизмов.

К существенным недостаткам метода относятся:

  1. Коррозионная активность воды, обработанной озоном.
  2. Опасность в случае передозировки реагентом и серьезная техника безопасности в процессе очистки.
  3. Высокая стоимость специальной установки – озонатора.

Обезжелезивание

Отдельного внимание заслуживает оборудование для обезжелезивания, поскольку железо в растворенном состоянии засоряет промышленное оборудование, в результате чего оно быстро ломается. В основе фильтров обезжелезивания используется специальный материал «Greensand», который представляет собой мелкозернистый песок, покрытый сверху диоксидом марганца. Именно диоксид магния и окисляет молекулы железа, которые затем выпадают в осадок. Фильтр обезжелезивания является неотъемлемой частью современных установок фильтрации воды.

Физико-химические способы очистки воды

Физико-химические способы объединяют в себе очистку реагентами и механическое удаление примесей. К наиболее распространенным способам данной группы относятся:

  • адсорбация;
  • коагуляция;
  • флотация.

Адсорбация

Под адсорбации понимают процесс поглощения молекул загрязнения поверхностью адсорбента – твердого тела с пористой поверхностью. Одним их самым популярных адсорбентов является активированный уголь, который способен очистить воду от углеводорода, нефтепродуктов, хлора и фосфора, а также стимулировать разложение озона и фосфора.

Часто фильтры на основе активированного угля используются для итоговой очистки воды. Являются незаменимым элементом практически любой системы фильтрации. К недостаткам угольных фильтров относят быстрое засорение картриджа, что требует его частой замены.

Разновидностью адсорбации является ионный обмен. Фильтры на основе ионного обмена имеют в своем составе картридж со смолой, которая содержит ионы натрия. Проходя через такой фильтр, вода с повышенным содержанием солей умягчается. Соли вода замещают готовые к обмену ионы натрия, благодаря чему вода после прохождения через такой фильтр получается мягкой и насыщенной натрием.

К сожалению, ионообменные фильтры быстро засоряются и требуют частой замены картриджей.

Коагуляция

Метод коагуляции основывается на том, что специальные вещества – коагулянты, притягивают к себе загрязнения – соли металлов, песок, глину, а затем в виде хлопьев выпадают в осадок. После отстаивания такая вода либо подвергается дальнейшей очистке посредством фильтрации, либо сливается. Метод получил широкое распространение в очистке на промышленных предприятиях

В роли коагулянтов могут быть сернокислый алюминий, сернокислое и хлорное железо, алюмокалиевые квасцы, алюминат натрия.

Разновидностью коагуляции является флокуляция. В отличие от коагуляции, слипание частиц происходит не только в момент их непосредственного соприкосновения, но и в процессе опосредованного соприкосновения молекул.

Флотация

Метод флотации активно используют для очистки сточных вод в промышленности. Эффективен при . Принцип действия основывается на добавлении в воду диспергированного воздуха, под воздействием которого молекулы загрязнений скапливаются на поверхности воды в виде белой пены, после чего удаляются специальным оборудованием. После флотации вода подвергается дополнительной очистке посредством сорбции.

К достоинствам флотации относят:

  1. Экономичность метода.
  2. Простоту конструкции.
  3. Быстроту очистки сточных вод.
  4. Возможность удаления нефтепродуктов.

Промышленные фильтры для очистки воды: виды, отличия, цены

Выше мы много сказали про методы промышленной водоподготовки и очистки сточных вод. Попытаемся классифицировать их в зависимости от вида загрязнения.

  1. Удаление механических примесей – механические и сорбционные фильтры, микрофильтрация.
  2. Обеззараживание – все мембранные методы, кроме микрофильтрации (обратный осмос, нанофильтрация, ультрафильтрация), озонирование.
  3. Обезжелезивание – хлорирование, озонирование, материал Greensand
  4. Очистка от сероводорода – напорная и безнапорная аэрация, хлорирование, озонирование, адсорбация.
  5. Удаление органики, хлора, озона – адсорбация, коагуляция
  6. Выведение нефтепродуктов – флотационные установки.
  7. Умягчение – ионный обмен, обратный осмос.

Стоимость промышленных фильтров зависит от сложности установки и используемых материалов, поэтому цену в каждом конкретном случае нужно уточнять индивидуально.

© 2024 pechivrn.ru -- Строительный портал - Pechivrn