Усилительный каскад на транзисторах. Безооосный унч с tnd каскадом Фильтры нч вч в предварительных каскадах унч

Главная / Газ

Самая суть для разбирающихся практиков

Усилитель собран по принципу «двойное моно», схема одного канала показана на рис.1 . Первый каскад на транзисторах VT1-VT4 – это усилитель напряжения с коэффициентом около 2,9 , второй каскад на VT5 – усилитель тока (эмиттерный повторитель). При входном напряжении 1 В выходная мощность около 0,5 Вт на нагрузке 16 Ом. Рабочий диапазон частот по уровню -1 dB примерно от 3 Гц до 250 кГц. Входное сопротивление усилителя – 6,5…7 кОм, выходное – 0,2 Ом.

Графики КНИ на частоте 1 кГц при выходной мощности 0,52 Вт и 0,15 Вт показаны на рис.2 и рис.3 (сигнал в звуковую карту подаётся через делитель «30:1»).

На рис.4 показан результат интермодуляционных искажений при измерении двумя тонами равного уровня (19 кГц и 20 кГц).

Усилитель собран в подходящем по размерам корпусе, взятом от другого усилителя. К цепям питания одного из каналов подключен блок управления вентиляторами (рис.5 ), контролирующий температуру одного из радиаторов выходных транзисторов (монтажная плата с навесным монтажом видна в центре на рисунке 6 ).

Оценка звучания на слух – «неплохо». Звук к колонкам не «привязан», панорама есть, но её «глубина» меньше, чем та, к которой привык. С чем это связанно, пока не выяснил, возможно (варианты с другими транзисторами, с изменением тока покоя выходных каскадов и поиском точек подключения входных/выходных «земель» были проверены).

Теперь для тех, кому интересно, немного об экспериментах

Эксперименты заняли достаточно долгое время и проводились немного хаотично – переходы с одного на другое делались по мере решения одних вопросов и появлению других, поэтому в схемах и измерениях могут быть заметны некоторые несовпадения. В схемах это отражается как нарушение нумерации элементов, а в измерениях - как изменение уровня шумов, наводок от сети 50 Гц, пульсаций 100 Гц и их продуктов (применялись разные блоки питания). Но в большинстве случаев замеры проводились несколько раз, поэтому неточности не должны быть особо значимыми.

Все эксперименты можно разбить на несколько. Первый был проведён для оценки принципиальной работоспособности TND каскада, следующие – для проверки таких характеристик, как нагрузочная способность, коэффициент усиления, зависимость линейности, работа с выходным каскадом.

Достаточно полную теоретическую информацию о работе TND каскада можно узнать из статей Г.Ф. Прищепова в журналах «Схемотехника» №9 2006 г. и «Радиохобби» №3 2010 г. (там примерно одинаковые тексты), поэтому здесь будет рассмотрено только его практическое применение.

Итак, первое – оценка принципиальной работоспособности

Сначала была собрана схема на транзисторах КТ315 с коэффициентом усиления около трёх (рис.7 ). При проверке оказалось, что с теми номиналами R3 и R4, что показаны на схеме, усилитель работает только с сигналами малого уровня, а при подаче 1 В происходит перегруз по входу (1 В – это уровень, который могут отдавать ПКД и звуковая карта компьютера, поэтому почти все измерения приведены к нему). На рисунке 8 на нижнем графике показан спектр выходного сигнала, на верхнем – входного и на нём видны искажения (КНИ должен быть около 0,002-0,006%). Глядя на графики и сравнивая уровни в каналах, надо учитывать, что выходной сигнал поступает в звуковую карту через делитель 10:1 (с входным сопротивлением около 30 кОм, резисторы R5 и R6 на рис.7 ) – ниже по тексту параметры делителя будут другими и об этом всегда будет указано).

Если считать, что появление искажений во входном сигнале говорит об изменении входного сопротивления каскада (что обычно вызвано неправильно выбранным режимом по постоянному току), то для работы с бОльшими входными сигналами следует увеличивать сопротивление R4 и, соответственно, для сохранения Кус равного трём, увеличивать R3.

После установки R3=3,3 кОм, R4=1,1 кОм, R1=90 кОм и повышения напряжения питания до 23В, удалось получить более-менее приемлемый значения КНИ (рис.9 ). Также выяснилось, что TND каскад «не любит» низкоомную нагрузку, т.е. чем больше будет сопротивление следующего каскада, тем меньше уровни гармоник и тем ближе к расчетному значению становится коэффициент усиления (ниже будет рассмотрен ещё один пример).

Затем усилитель был собран на печатной плате и к нему был подключен эмиттерный повторитель на составном транзисторе КТ829А (схема на рисунке 1 ). После установки транзистора и платы на радиатор (рис.10 ), усилитель был проверен при работе на нагрузку 8 Ом. На рисунке 11 видно, что сильно выросло значение КНИ, но это результат работы эмиттерного повторителя (сигнал со входа усилителя (верхний график) берётся в компьютер напрямую, а с выхода – через делитель 3:1 (нижний график)).

На рисунке12 показан график КНИ при входном сигнале 0,4 В:

После этого было проверено ещё два варианта повторителей – с составным транзистором из биполярных КТ602Б+КТ908А и с полевым IRF630A (ему потребовалось увеличение тока покоя за счёт установки на затворе +14,5В и уменьшения сопротивления R7 до 5 Ом при постоянном напряжении на нём 9,9 В (ток покоя около 1,98 А)). Лучшее, что получилось при входных напряжениях 1 В и 0,4 В, показано на рисунках 13 и 14 (КТ602Б+КТ908А), 15 и 16 (IRF630A):

После этих проверок схема вернулась к варианту с транзистором КТ829, был собран второй канал и после прослушки макета при питании от лабораторных источников, был собран усилитель, показанный на рисунке 6 . Два или три дня ушло на отслушивание и мелкие доработки, но на звуке и характеристиках усилителя это почти не отразилось.

Оценка нагрузочной способности

Так как желание проверить каскад TND на «грузоподъемность» ещё не пропало, был собран новый макет на 4-х транзисторах в цепочке (рис.17 ). Напряжение питания +19 В, делитель на выходе каскада 30 кОмный «10:1», входной сигнал – 0,5 В, выходной – 1,75 В (коэффициент усиления равен 3,5, но если делитель отключить, то выходное напряжение получается около 1,98 В, что говорит об Кус=3,96):

Подбирая сопротивление резистора R1, можно получить некоторый минимальный КНИ и этот график при нагрузке 30 кОм показан на рисунке 18 . Но если теперь последовательно резистору R5 установить ещё один такого же номинала (54 кОм), то гармоники получают вид, показанный на рисунке 19 – вторая гармоника вырастает примерно на 20 dB относительно основного тона и чтобы её вернуть к низкому значению, нужно опять изменить сопротивление R1. Это косвенно указывает на то, что для получения максимально стабильных значений КНИ питание каскада должно быть стабилизировано. Проверяется просто – изменение напряжения питания примерно также меняет вид гармоникового «хвоста».

Так, хорошо, это каскад работает с 0,5 В на входе. Теперь надо бы проверить его при 1 В и, допустим, с коэффициентом усиления «5».

Оценка коэффициента усиления

Каскад собран на транзисторах КТ315, напряжение питания +34,5 В (рис.20 ). Чтобы получить Кус=5, были поставлены резисторы R3 и R4 номиналами 8,38 кОм и 1,62 кОм. На нагрузке в виде резисторного делителя «10:1» с входным сопротивлением около 160 кОм выходное напряжение получилось около 4,6 В.

На рисунке 21 видно, что КНИ менее 0,016%. Большой уровень помехи 50 Гц и других кратных выше по частоте – это плохая фильтрация питания (работает на пределе).

К этому каскаду был подключен повторитель на КП303+КТ829 (рис.22 ) и затем сняты характеристики всего усилителя при работе на нагрузку 8 Ом (рис.23 ). Напряжение питания 26,9 В, коэффициент усиления около 4,5 (4,5 В переменки на выходе на нагрузке 8 Ом – это примерно 2,5 Вт). При настройке повторителя на минимальный уровень КНИ пришлось изменить напряжение смещения TND каскада, но так как уровень его искажений намного меньше, чем повторителя, то на слух это никак не отразилось – были собраны два канала и отслушаны в макетном варианте. Разницы в звучании с описанным выше полуваттным вариантом усилителя не замечено, но так как усиление нового варианта было избыточно, а тепла он выделяет больше, то схема была разобрана.

При регулировке напряжения смещения TND каскада можно найти такое положение, что гармониковый «хвост» имеет более ровный спад, но становится длинней и при этом уровень второй гармоники вырастает на 6-10 dB (общий КНИ становится около 0,8-0,9%).

При таком большом КНИ повторителя изменением номинала резистора R3 можно смело менять коэффициент усиления первого каскада как в большую, так и в меньшую сторону.

Проверка каскада с бОльшим током покоя

Схема была собрана на транзисторной сборке КТС613Б. Ток покоя каскада 3,6 мА - это самый большой из всех проверенных вариантов. Выходное напряжение на резисторном делителе 30 кОм получился 2,69В, КНИ при этом около 0,008% ((рис.25 ). Это примерно в три раза меньше, чем показано на рисунке 9 при проверке каскада на КТ315 (с таким же коэффициентом усиления и приблизительно с таким же напряжением питания). Но так как ещё одну такую же транзисторную сборку найти не удалось, второй канал не собирался и усилитель, соответственно, не слушался.

При увеличении сопротивления R5 в два раза и без подстройки напряжения смещения КНИ становится около 0,01% (рис.26 ). Можно сказать, что вид «хвоста» меняется незначительно.

Попытка оценки полосы рабочих частот

Сначала проверялся макет, собранный на транзисторной сборке. При использовании генератора ГЗ-118 с полосой выдаваемых частот от 5 Гц до 210 кГц «завалов на краях» не было обнаружено.

Затем проверялся уже собранный полуваттный усилитель. Он ослабил сигнал частотой 210 кГц примерно на 0,5 dB (при этом на 180 кГц изменений не было).

Нижнюю границу оценить было нечем, по крайней мере, не удалось увидеть разницу между входным и выходным сигналами при запуске свип-генератора программы , начиная с частот 5 Гц. Поэтому можно считать, что она ограничивается ёмкостью разделительного конденсатора С1, входным сопротивлением TND каскада, а также ёмкостью «выходного» конденсатора С7 и сопротивлением нагрузки усилителя – примерный расчет в программе показывает -1 dB на частоте 2,6 Гц и -3 dB на частоте 1,4 Гц (рис.27 ).

Так как входное сопротивление TND каскада достаточно низкое, то регулятор громкости следует выбирать не более 22...33 кОм.

Заменой выходного каскада может быть любой повторитель (усилитель тока), обладающий достаточно большим входным сопротивлением.

В приложении к тексту находятся файлы двух вариантов печатных плат в формате программы 5 версии (рисунок при изготовлении плат по надо «зеркалить»).

Послесловие

Спустя несколько дней увеличил питание каналов на 3 В, заменил 25-тивольтовые электролитические конденсаторы на 35-тивольтовые и подстроил напряжения смещения первых каскадов на минимум КНИ. Токи покоя выходных каскадов стали около 1,27 А, значения КНИ и ИМД при 0,52 Вт выходной мощности уменьшились до 0,028% и 0,017% (рис.28 и 29 ). На графиках видно, что увеличились пульсации 50 Гц и 100 Гц, но на слух их не слышно.

Литература:
1. Г. Прищепов, «Линейные широкополосные TND-усилители и повторители», журнал «Схемотехника» №9, 2006 г.

Андрей Гольцов, r9o-11, г. Искитим

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
Рисунок №1, детали на один канал
VT1...VT4 Биполярный транзистор

PMSS3904

4 В блокнот
VT5 Биполярный транзистор

КТ829А

1 В блокнот
VD1...VD4 Диод

КД2999В

4 В блокнот
R1 Резистор

91 кОм

1 smd 0805, точный номинал подбирать при настройке В блокнот
R2 Резистор

15 кОм

1 smd 0805 В блокнот
R3 Резистор

3.3 кОм

1 smd 0805 В блокнот
R4 Резистор

1.1 кОм

1 smd 0805 В блокнот
R5, R6 Резистор

22 Ом

2 smd 0805 В блокнот
R7 Резистор

12 Ом

1 набрать из ПЭВ-10 В блокнот
R8, R9 Резистор

Каскады предварительного усиления Общие сведения. Предварительный усилитель усиливает коле-бания напряжения или тока источника сигнала до значений, кото-рые необходимо подать на вход оконечного каскада для получения в нагрузке заданной мощности. Предварительный усилитель может быть одно- и многокаскадным. Транзисторы в каскадах предвари-тельного усиления включают с ОЭ, а лампы — с общим катодом, что позволяет получить наибольшее усиление . Включение транзистора с ОБ целесообразно во входных каскадах, работающих от источника сигнала с малым внутренним сопротивлением. Для уменьшения нелинейных искажений в каскадах предварительного усиления предпочтителен режим А.

  • По виду связи между каскада-ми (при многокаскадном выполнении усилителей) различают усили-тели с емкостной,
  • трансформаторной
  • гальванической связью (уси-лители постоянного тока).

Усилители с емкостной связью. Усилители с емкостной или ЯС-бвязью имеют широкое применение.. Они просты в конструкции и наладке, дешевы, обладают стабильными характеристиками, на-дежны в работе, имеют небольшие размеры и массу. Типовые схе-мы усилителя на транзисторах и лампах с емкостной связью Частотная характеристика резисторного каскада с емкостной связью может быть разделена на три области частот: нижних НЧ, средних СЧ и верхних ВЧ. В области нижних частот коэффициент усиления Kн снижается (с уменьшением частоты) в ос-новном из-за увеличения сопротивления конденсатора межкас-кадной связи Ср1. Емкость этого конденсатора выбирают достаточ-но большой, что снизит падение напряжения на нем. Обычно низ-кочастотный диапазон ограничивается частотой fH, на которой ко-эффициент усиления снижается до 0,7 среднечастотного значения, т. е. Kн=0,7K0. В области средних частот, составляющих основную часть рабочего диапазона усилителя, коэффициент усиления Kо практически не зависит от частоты. В области верхних частот fB снижение усиления Kв обусловлено емкостью Со=/=Свых+См+Свх (где Свых — емкость усилительного элемента каскада; См — емкость монтажа, Свх — емкость усилительного элемента следующего кас-када) . Эту емкость всегда стремятся свести к минимуму, чтобы ограничить через нее ток сигнала и обеспечить большой коэффициент усиления. Расчет резисторного каскада предварительного усиления. Ис-ходные данные: полоса усиливаемых частот fн-fв = 100-4000 Гц, коэффициент частотных искажений MH

  • 1. Выбор типа транзистора. Ток коллектора каскада, при ко-тором обеспечивается амплитуда входного тока следующего кас-када Iвх.тсл, Iк= (1,25ч- 1,5)IЕх.отсл = .(1,25-7-1,5) 12= 15-5-18 мА. При-мем Iк=15 мА. По току Iк и граничной частоте, которая должна бытьfашга>3fв|Зср = 3fв(Рмин + Рмакс)/2 = 3-4000(30 + 60)/2 =
  • =540000 Гц=0,54 МГц, выбираем для каскада транзистор МП41 со следующими параметрами: Iк=40 мА; UКэ=15 В; |3мин = 30; рмакс=60;fамин = 1МГц.
  • 2. Определение сопротивлений резисторов RK и Ra. Эти сопро-тивления определяют, исходя из падения напряжения на них. При-мем падение напряжения на резисторах R* и Rэ соответственно 0,4 Ек и 0,2 Ек, Выбираем резисторы МЛТ-0,25 270 Ом и МЛТ-0,25 130 Ом.
  • 3. Напряжение между эмиттером и коллектором транзистора в рабочей точке икэо=Ек — !K(RK+Ra) = lQ — 15-10-3(270+130)=4 В. При Uкэо=4 В и Iк=15 мА по статическим выходным характеристи-
  • кам (рис. 94, а), определяем ток базы Iбо=200 мкА в рабочей точке О". По входной статической характеристике транзистора (рис. 94, б) икэ=5 В для Iбо=200 мкА определяем напряжение смещения в ра-бочей точке О/Uбэо=0,22 В.
  • 4. Для определения входного сопротивления транзистора в точке О" проводим касательную к входной характеристике транзистора. Входное сопротивление определяется тангенсом угла наклона каса-тельной
  • 5. Определение-делителя, напряжения смещения. Сопротивле-ние резистора R2 делителя принимают R2=(5-15)Rвх.э. Примем R2=6Rвх.э=6-270 =1620 Ом. Выбираем по ГОСТу резистор МЛТ-0,25 1,8 кОм. Ток делителя в каскадах предварительного уси-ления принимают Iд=(3-10)Iбо=(З-10) -200=600-2000 мкА. При-мем Iд=2 мА. Сопротивление резистора R1 делителя Выбираем по ГОСТу резистор МЛТ-0,25 3,9 кОм.
  • 6. Расчет емкостей. Емкость конденсатора межкаскадной свя-зи определяют, исходя из допустимых частотных искажений Ms, вносимых на низшей рабочей частоте Емкость конденсатора Примем электролитический конденсатор емкостью 47 мкФ с Uраб>ДURЭ=0,2 Eк=0,2-10=2 В.

Усилители с трансформаторной связью . Каскады предварительного усиления с трансформаторной связью обеспечивают лучшее-согласование усилительных каскадов по сравнению с каскадами с резисторной емкостной связью и применяются в качестве инверсных для подачи сигнала на двухтактный выходной каскад. Нередко трансформатор используют в качестве входного устройства.

Схемы усилительных каскадов с последовательным и параллельным включением трансформатора показаны на. Схема с последовательно включенным трансформатором не содержит резистора RK в коллекторной цепи, поэтому обладает более высо-ким выходным сопротивлением каскада, равным выходному сопро-тивлению транзистора, и применяется чаще. В схеме с параллельно включенным трансформатором требуется переходной конденсатор С. Недостатком этой схемы являются дополнительные потери мощно-сти сигнала в резисторе RK и снижение выходного сопротивления вследствие шунтирующего действия этого резистора. Нагрузкой трансформаторного каскада обычно служит относи-тельно низкое входное сопротивление последующего каскада. В этом случае для межкаскадной связи используют понижающие транс форматоры с коэффициентом трансформации n2=*RB/R"H

Частотная характеристика усилителя с трансформаторной связью имеет снижение коэффициента усиления в области нижних и верхних частот. В области нижних частот спад коэффи-циента усиления каскада объясняется уменьшением индуктивного сопротивления обмоток трансформатора, вследствие чего возрастает их шунтирующее де.йствие входной и выходной цепей каскада и снижается коэффициент усиления К=Kо/. На средних частотах влиянием реактивных эле-ментов можно пренебречь. В области верхних частот на коэффициент уси-ления влияют емкость коллекторного перехода Ск и индуктивность рассеи-вания ls обмоток трансформатора. На некоторой частоте емкость Ск и индуктивность Is могут вызвать резонанс напряжения, вследствие че-го на этой частоте возможен подъем частотной характеристики. Иногда этим пользуются для коррекции час-тотной характеристики усилителя.


В брошюре обобщен и проанализирован опыт создания входных каскадов высококачественных усилителей низкой частоты. Приводится оригинальная методика инженерного расчета входного каскада на полевом транзисторе. Значительное место уделено описанию предусилителей-корректоров для звукоснимателей электропроигрывающих устройств.

Одним из самых популярных направлений деятельности радиолюбителей-конструкторов является создание высококачественной аппаратуры звуковоспроизведения и, в частности, одного из звеньев этой аппаратуры - усилителя низкой частоты (УНЧ).
Анализ популярной литературы по этой теме показал, что основное внимание уделяют, как правило, одной части УНЧ - оконечному усилителю или усилителю мощности. Однако такое положение зачастую приводит к тому, что недостаточная отработка схем входных каскадов усилителей сводит на нет полученные высокие параметры оконечных усилителей. Действительно, ряд параметров современных УНЧ формируются именно во входных каскадах усилителей, например отношение сигнал/шум, затухание между каналами, уровень фона, соответствие частотной коррекции требуемой и т. д.

Предлагаемая брошюра познакомит радиолюбителей с наиболее популярными схемотехническими решениями в этой области. Критически оценивая ту или иную схему входного каскада, читатель может осуществить правильный ее выбор для конструируемого УНЧ.

К входным каскадам отнесены те, на вход которых подается электрический сигнал звуковой программы. Источниками высококачественной звуковой программы обычно являются: микрофон, магнитная или пьезоэлектрическая головка звукоснимателя, линейные выходы радиоприемника и магнитофона.

Опыт показал, что УНЧ на транзисторах могут по большинству параметров (не говоря уже о технологичности) превосходить ламповые УНЧ, однако их звучание менее естественно. Кроме того, в усилительном каскаде на транзисторе присутствуют гармоники вплоть до 8-й и 9-й, в то время как в ламповых усилителях их нет, начиная с 4-й. При одинаковом увеличении уровня сигнала искажения в транзисторных усилителях растут также более круто, чем в ламповых. Следовательно, пока преждевременно отказываться от использования в УНЧ электронных ламп.

В брошюре рассмотрены входные каскады как на транзисторах, так и на электронных лампах.

Схемы входных каскадов на электронных лампах
Схемы микрофонных усилителей
Схемы предусилителей-корректоров для электромагнитной головки звукоснимателя
Схемы входных каскадов для радиоприемников и линейных выходов магнитофонов
Монтаж и наладка ламповых схем

Схемы входных каскадов на биполярных транзисторах
Предусилитель для микрофона
Схемы предусилителей-корректоров для электромагнитных звукоснимателей
Схемы предусилителей для пьезоэлектрической головки
Входные каскады универсальных усилителей
Монтаж и наладка входных каскадов на транзисторах


Особенности полевых транзисторов и их применения
Схемы входных каскадов на полевых транзисторах
Инженерный расчет каскада на полевом транзисторе


Рассчитана на радиолюбителей, имеющих опыт разработки радиоаппаратуры.

Язык: Русский
Страниц: 33
Формат: PDF
Размер: 15,5 Mb (3% восст.)
Скачать: Красов Ю.С. Входные каскады высококачественных усилителей низкой частоты

Одним из вариантов заметного повышения качества воспроизведения музыкальных файлов является способ разделения сигнала на частотые составляющие (НЧ, СЧ, ВЧ) в предварительных маломощных каскадах и дальнейшее их усиление соответствующими узкополосными усилителями и динамическими системами. Такой вариант позволяет, например, избавиться от необходимости применения пассивных RLC-фильтров в акустических системах, которые вносят неизбежные затухания и искажения в сигнал уже на выходе его из усилительного тракта. Также, такой вариант даёт возможность применения раздельных акустических систем для низких частот () и значительно менее требовательных к мощности небольших СЧ и ВЧ излучателей. Требования к характеристикам самих усилителей мощности тоже не одинаковы для НЧ, СЧ и ВЧ сигналов и предлагаемый вариант даёт возможность использовать такие усилители оптимальным образом. В этой статье будет приведён пример построения системы раздельного, двухполосного воспроизведения средней мощности. При её изготовлении ставилась задача максимально эффективного использования имеющихся ещё с советских времён малогабаритных широкополосных акустических систем «Radiotehnika S-30» и АС «PHILIPS FB-20PH». Конечно, с предлагаемым усилителем возможно применение и любых других систем, аналогичных по мощности и характеристикам.

Как известно всем, кто сталкивался в своё время с колонками S-30, качество воспроизведения звука этими АС было весьма посредственным, особенно в среднем диапазоне (СЧ-ВЧ) из за применения динамических головок с не очень высокими параметрами. Но использовать эти колонки в качестве «сабвуферов» для обычных жилых помещений вполне возможно. В то же время имеющиеся колонки от миникомплекса «PHILIPS»с номинальной мощностью по 20 Вт, довольно качественно воспроизводят как раз СЧ-ВЧ составляющие сигнала, но имеют ощутимый завал на частотах ниже 90 Гц. Поэтому и возник такой вариант использования этой акустики с максимально возможной отдачей.

Одним из важных плюсов в этом варианте, как уже говорилось выше, является то, что усилитель мощности для каждой полосы частот — отдельный и может быть подобран по мощности и характеристикам оптимальным образом. Исходя из номинальных мощностей применяемой акустики, было принято решение использовать в качестве УМЗЧ специализированные микросхемы-усилители мощности (конечно, можно использовать МС других серий в соответствующем включении или, например, транзисторные схемы). Такие микросхемы мощностью до 45 ВТ на канал (содержат обычно 2, 4 канала) широко применяются в малогабаритной радиотехнике, например в автомагнитолах.

Предварительные каскады с фильтрами

Поскольку микросхемы усилителей мощности серии TDA, применённые в данном усилителе, имеют однополярное питание (+8...18 В), то и каскады предварительного усиления выбирались с однополярным питанием. При этом ставилась задача использовать схемы с минимальным количеством каскадов и активных элементов в них для снижения вносимых этими каскадами искажений в исходный сигнал. В качестве входного каскада с фильтром, выделяющим НЧ-составляющую сигнала, была применена схема на рис.1, опубликованная в своё время в одном из номеров журнала «Моделист-Конструктор», но с заменой транзисторов на современные аналоги и изменением частоты среза фильтра под вышеуказанную акустику.

Здесь транзистор Т1 работает как фазовращатель, напряжения в противофазе возникают на резисторах R3 и R4. Прямой сигнал снимается с эмиттера и подаётся на следующий каскад на транзисторе Т2. Он пропускает СЧ и ВЧ составляющие сигнала и задерживает низкие частоты, которые проходят на выход НЧ через каскад на Т3. Частота среза выбирается подбором конденсаторов С3 и С4, в данном случае она около 150 Гц. Частоту среза можно сдвинуть в сторону более высоких частот, уменьшая эти ёмкости. Например в исходной схеме, при ёмкостях С3=С4 = 330 пФ частота среза была указана равной 3 кГц. К сожалению, найти исходную схему с подробным описанием и расчётами мне не удалось, поэтому частота среза и эти ёмкости подбирались в готовой схеме опытным путём по наилучшему соотношению звучания НЧ и СЧ-ВЧ колонок. Крутизна среза фильтра около 12 дБ на октаву. Сигнал СЧ+ВЧ с выхода этого фильтра подаётся непосредственно на усилитель мощности средних-высоких частот, а низкочастотный сигнал на ещё один фильтр — инфранизких частот (сабсоник), который срезает частоты ниже 30 Гц (рис.2).

Это позволяет избавиться от соответствующих колебаний очень низких частот, которые практически не воспроизводятся применяемыми динамиками, тем не менее вызывают ненужные нам колебания их диффузоров с большой амплитудой, что приводит к большим перегрузкам и искажениям сигнала. Частота среза фильтра задаётся элементами С2, С3, С4, R4, R5, а режим работы транзистора Т1 подбором номинала резистора R3 (следует выставить на коллекторе этого транзистора примерно половину напряжения питания каскада, т. е. 4,5 V). На выходе фильтра включен переменный резистор (может быть от 10 до 100 кОм, это зависит от входного сопротивления включенного за ним усилителя мощности). С его помощью можно регулировать уровень усиления низких частот относительно СЧ-ВЧ для выравнивания суммарной частотной характеристики всей системы. Шунтирующий конденсатор C5 после переменного резистора нужен для дополнительного среза частот выше 1000 Гц, чтобы убрать возможные вч-шумы и наводки, а разделительный C6 мкФ можно не ставить, если на входе усилителя мощности такой конденсатор уже используется. Для снижения собственных шумов, схемы выбраны без использования оксидных электролитических конденсаторов в сигнальных цепях (за исключением входного конденсатора С1 первого фильтра, но и его можно заменить при желании на обычный, например, плёночный). Транзисторы в обоих фильтрах можно применить любые маломощные n-p-n структуры, но, желательно с высоким коэффициентом усиления и низким уровнем собственных шумов (2РС1815L, BC549C, BC550C, BC849C (smd) , BC850C (smd), BC109C, BC179C и др.)

Оконечные усилители мощности

Для упрощения схемы и в целях уменьшения размеров готового устройства, в качестве оконечных усилителей были использованы микросхемы серии TDA, которые широко применяются в малогабаритной аудио аппаратуре, например, в автомагнитолах. Эти микросхемы имеют, как правило, достаточно приемлемые характеристики для бытовой аппаратуры вполне высокого качества. При этом они имеют встроенные схемы защиты от перегрузки, перегрева и коротких замыканий в нагрузке. Мощностные характеристики определялись исключительно мощностями имеющихся акустических систем. Так, для СЧ-ВЧ полосы была использована МС TDA1558Q в мостовом включении. Эта МС может включаться по схеме 4 канала по 11 Вт, либо по мостовой схеме 2х22 Вт). Для колонок мощностью 20 ватт была применена такая мостовая схема включения (рис.3)

Схема предельно простая и отдельного описания, явно, не требует. Неиспользуемые выводы МС — 4,9,15 — следует оставить свободными. Если отдельный выключатель MUTE / ST-BY использоваться не будет, контакт 14 МС следует соединить напрямую с плюсовым проводом питания. Электролитический конденсатор большой ёмкости (2200 mF) желательно ставить как можно ближе к выводам МС. От его ёмкости зависит не только качество сглаживания питающего напряжения, но и перегрузочная способность усилителя. Конденсатор 0,1 mF в цепи питания ставится для фильтрация возможной высокочастотной составляющей. Рабочее напряжение всех элементов должно быть не ниже напряжения питания (+U).

Для низкочастотной полосы была использована одна из имеющихся в наличии оригинальных МС TDA7575. Эти микросхемы действительно «оригинальны» и встречаются, как правило, в аппаратах более высокого класса и мощности. Найти такую не очень просто, как и схему её подключения. Конечно, здесь можно применить и многие другие МС с подобными характеристиками (2 или 4 канала по 45 Вт), даташиты на которые без труда можно найти в интернете. Данная же микросхема здесь будет описана немного более подробно для тех, кто захочет применить именно её (рис.4).

Основные характеристики: мощность — 2х45 W или 1х75 W (на нагрузку 1 Om), линейная АЧХ 20...20 000 Гц, Rвх = 100 кОm.

Минусовые входные выводы 9 и 19 в моём варианте включения соеденины на «землю» (общий провод), НЧ сигнал подаётся на выводы 8 и 20 (соответственно левый и правый канал). В случае установки здесь входных конденсаторов по 0,33 мкФ, конденсатор С6 на выходе фильтра по схеме рис.2 ставить, естественно, не нужно. Как видно, в МС присутствуют различные входы и выходы дополнительного управления, которые в нашем случае не используются и их можно оставить свободными (выводы 3,13,14,16,17,18 и 25). Для включения МС в рабочий режим на контакты ST-BY и MUTE нужно подать напряжение питания +U. Микросхема позволяет подключать акустику сопротивлением 1 Ом и может тогда выдать мощность до 75 Вт, но при мостовом включении и, соответственно, в одноканальном режиме. При этом следует соблюдать следующие условия:

  • запараллелить выходы (OUT1+ соединить с OUT2+; OUT1- соединить с OUT2-);
  • минимизировать сопротивление выходного шлейфа, т.е. провода от выхода МС до динамика сделать как можно толще и короче, а для этого сам усилитель должен быть расположен рядом с динамиком. Сопротивления выходного шлейфа очень существенно влияет на коэффициент гармоник;
  • входной сигнал подавать на вход IN2 (IN1 — оставить свободным или заземлить);
  • на вывод «1 Om SETTING» подать U=2,5V (для двухканального варианта по 45 Вт, как в нашем случае, этот выход следует оставить свободным или соединить с общим проводом). Сам не пробовал использовать схему с таким включением для 1 Ом-динамика, так как у меня нет динамиков сопротивлением 1 Ом, поэтому привожу здесь как справку данные для такого варианта, которые смог найти в доступных мне источниках.

Источник питания

Для питания усилителя в целом были использованы два трансформатора мощностью по 60-70 Вт, по одному для для НЧ и СЧ-ВЧ каналов. Один трансформатор достаточной мощности (120 и более Вт) просто не «вписывался» в малогабаритный корпус по высоте. Стабилизаторов тоже, соответственно, два. Питание использованных здесь МС лежит в пределах от 8 до 18 вольт, поэтому трансформатор может быть выбран с соответствующим напряжением на вторичной обмотке и выходным током не менее 3-х ампер без значительной «просадки». После трансформатора ставятся обычные двухполупериодные мостовые выпрямители с диодами нужной мощности, или диодная сборка (например KBU810 на 8 А). Далее выпрямленное напряжение стабилизируется в схеме «умощнённого» стабилизатора на МС типа КРЕН8 или аналогичной с дополнительным регулирующим транзистором (рис.5)

Выходное напряжение стабилизатора может быть в пределах 12 — 17 вольт для достижения максимально возможной мощности при минимуме искажений. В данном случае применена микросхема KIA7812 с напряжением стабилизации 12 вольт и для поднятия выходного напряжения до 15-16 вольт между средним выводом и общим проводом установлен дополнительно стабилитрон на 3-4 вольта (КС133, КС 139). Поднимать напряжение питания до 18 вольт не следует, хоть такой предел и указан в даташитах на МС TDA, так как на практике, в момент включения возможно срабатывание системы внутренней защиты этих микросхем из-за «перегрузки». Можно питать усилители и нестабилизированным напряжением, но это увеличит их нагрев во время работы и уменьшит перегрузочную способность.

Каскады предварительного усиления — фильтры, возможно питать от этих же стабилизаторов, но лучше, всё-таки, сделать для них один общий стабилизатор на 9...12 вольт для развязки от помех и возможного взаимного влияния полосных каналов.

Все микросхемы (усилители мощности и стабилизаторы), а также дополнительные мощные транзисторы (КТ818 или аналогичные импортные) блока питания следует закрепить на теплоотводах достаточной площади. В моём случае все эти элементы расположены на одном общем теплоотводе, состоящим из двух параллельно закреплённых алюминиевых пластин толщиной 3 мм и размером 70х200 мм. Как правило, большинство микросхем TDA и аналогичных имеют минус питания на корпусе и их можно, соответственно, крепить к одному теплоотводу без изоляционных прокладок. Транзисторы же и микросхемы стабилизатора следует изолировать. Печатные платы в архиве .

Заключение

Использование усилителя по приведённым здесь схемам позволило значительно повысить качество воспроизведения фонограмм даже с использованием акустики среднего уровня и качества. При этом колонки PHILIPS никак не переделывались, а в S-30 были отключены все внутренние пассивные фильтры и СЧ-ВЧ-головка 6ГДВ-1, а НЧ сигнал подавался напрямую на НЧ динамик (25ГДН-1-4). Регулировка уровня НЧ составляющей позволяет сбалансировать общую частотную характеристику всей системы в зависимости от размеров помещения и расстояния слушателя до акустики. Специально для сайта - А. Барышев .

Обсудить статью СХЕМА САМОДЕЛЬНОЙ ДВУХПОЛОСНОЙ АС С УНЧ

При расчете усилительных каскадов на полупроводниковых элементах нужно знать много теории. Но если требуется сделать простейший УНЧ, то достаточно подобрать транзисторы по току и коэффициенту усиления. Это основное, нужно еще определиться с тем, в каком режиме должен работать усилитель. Это зависит от того, где планируется его использовать. Ведь усиливать можно не только звук, но и ток - импульс для управления каким-либо устройством.

Виды усилителей

Когда реализуются конструкции усилительных каскадов на транзисторах, нужно решить несколько важных вопросов. Сразу определитесь с тем, в каком из режимов будет работать устройство:

  1. А - линейный усилитель, на выходе присутствует ток в любой момент времени работы.
  2. В - ток проходит только в течение первого полупериода.
  3. С - при высоком КПД нелинейные искажения становятся сильнее.
  4. D и F - режимы работы усилителей в режиме «ключа» (переключателя).

Распространенные схемы транзисторных усилительных каскадов:

  1. С фиксированным током в цепи базы.
  2. С фиксацией напряжения в базе.
  3. Стабилизация коллекторной цепи.
  4. Стабилизация эмиттерной цепи.
  5. УНЧ дифференциального типа.
  6. Двухтактные усилители НЧ.

Чтобы понять принцип работы всех этих схем, нужно хотя бы вкратце рассмотреть их особенности.

Фиксация тока в цепи базы

Это самая простая схема усилительного каскада, которая может использоваться в практике. За счет этого ее широко используют начинающие радиолюбители - повторить конструкцию не составит труда. Цепи базы и коллектора транзистора запитаны от одного источника, что является преимуществом конструкции.

Но у нее имеются и недостатки - это сильная зависимость нелинейных и линейных параметров УНЧ от:

  1. Питающего напряжения.
  2. Степени разброса параметров полупроводникового элемента.
  3. Температуры - при расчете усилительного каскада обязательно нужно учитывать этот параметр.

Недостатков довольно много, они не позволяют применять такие устройства в современной технике.

Стабилизация напряжения базы

В режиме А могут работать усилительные каскады на биполярных транзисторах. А вот если осуществить фиксацию напряжения на базе, то можно использовать даже полевики. Только это будет фиксация напряжения не базы, а затвора (названия выводов у таких транзисторов другие). В схему вместо биполярного элемента устанавливается полевой, ничего переделывать не придется. Нужно только подобрать сопротивления резисторов.

Стабильностью такие каскады не отличаются, основные его параметры при работе нарушаются, причем очень сильно. Ввиду крайне плохих параметров такая схема не используется, вместо нее лучше на практике применить конструкции со стабилизацией цепей коллектора или эмиттера.

Стабилизация коллекторной цепи

При использовании схем усилительных каскадов на биполярных транзисторах со стабилизацией коллекторной цепи получается сохранить на его выходе около половины от значения напряжения питания. Причем происходит это в относительно большом диапазоне питающих напряжений. Делается это за счет того, что имеется отрицательная обратная связь.

Такие каскады получили широкое распространение в усилителях высоких частот - УРЧ, УПЧ, буферных устройствах, синтезаторах. Такие схемы применяются в передатчиках (включая мобильные телефоны). Сфера применения таких схем очень большая. Конечно, в мобильных схема реализуется не на транзисторе, а на составном элементе - один маленький кристалл кремния заменяет огромную схему.

Эмиттерная стабилизация

Эти схемы можно часто встретить, так как у них имеются явные преимущества - высокая стабильность характеристик (если сравнивать со всеми теми, о которых было рассказано выше). Причина - очень большая глубина обратной связи по току (постоянному).

Усилительные каскады на биполярных транзисторах, выполненные со стабилизацией эмиттерной цепи, используются в радиоприемниках, передатчиках, микросхемах для повышения параметров устройств.

Дифференциальные усилительные устройства

Дифференциальный усилительный каскад используется довольно часто, у таких устройств очень высокая степень устойчивости к помехам. Для питания таких устройств можно применять низковольтные источники - это позволяет уменьшить габариты. Дифусилитель получается, если соединить эмиттеры двух полупроводниковых элементов на одном сопротивлении. «Классическая» схема дифференциального усилителя представлена на рисунке ниже.

Такие каскады очень часто применяются в интегральных микросхемах, операционных усилителях, УПЧ, приемниках ЧМ-сигналов, радиотрактах мобильных телефонов, смесителях частот.

Двухтактные усилители

Двухтактные усилители могут работать в практически любом режиме, но чаще всего используется В. Причина - эти каскады устанавливаются исключительно на выходах устройств, а там нужно повышать экономичность, чтобы обеспечить высокий уровень КПД. Реализовать схему двухтактного усилителя можно как на полупроводниковых транзисторах с одинаковым типом проводимости, так и с разным. «Классическая» схема двухтактного представлена на рисунке ниже.

Независимо от того, в каком режиме работы усилительный каскад находится, получается существенно уменьшить количество четных гармоник во входном сигнале. Именно это является главной причиной широкого распространения такой схемы. Двухтактные усилители часто используются в КМОП-элементах и прочих цифровых элементах.

Схема с общей базой

Такая схема включения транзистора встречается относительно часто, она является четырехполюсником - два входа и столько же выходов. Причем один вход является одновременно и выходом, соединяется с выводом «база» транзистора. К ней подключается один вывод от источника сигнала и нагрузка (например, динамик).

Чтобы запитать каскад с общей базой, можно применить:

  1. Схему фиксации тока базы.
  2. Стабилизацию напряжения базы.
  3. Коллекторную стабилизацию.
  4. Эмиттерную стабилизацию.

Особенность схем с общей базой - очень низкое значение входного сопротивления. Оно равно сопротивлению эмиттерного перехода полупроводникового элемента.

Схема с общим коллектором

Конструкции такого типа тоже используются довольно часто, это четырехполюсник, у которого два входа и столько же выводов. Очень много сходств со схемой усилительного каскада с общей базой. Только в этом случае коллектор является общей точкой подключения источника сигнала и нагрузки. Среди преимуществ такой схемы можно выделить ее высокое сопротивление по входу. Благодаря этому она часто применяется в усилителях низких частот.

Для того чтобы запитать транзистор, необходимо использовать стабилизацию по току. Для этого идеально подходит эмиттерная и коллекторная стабилизация. Нужно учесть, что такая схема не может инвертировать входящий сигнал, не усиливает напряжение, именно по этой причине ее называют «эмиттерным повторителем». Такие схемы имеют очень большую стабильность параметров, глубина ОС по постоянному току (обратной связи) почти 100%.

Общий эмиттер

Усилительные каскады с общим эмиттером имеют очень большой коэффициент усиления. Именно с использованием таких схемных решений строятся высокочастотные усилители, используемые в современной технике - системах GSM, GPS, в беспроводных сетях Wi-Fi. У четырехполюсника (каскада) имеется два входа и столько же выходов. Причем эмиттер соединен одновременно с одним выводом нагрузки и источника сигнала. Для питания каскадов с общим эмиттером желательно использовать двухполярные источники. Но если это сделать невозможно, допускается использование однополярных источников, только добиться высокой мощности вряд ли получится.

© 2024 pechivrn.ru -- Строительный портал - Pechivrn